Forgot password?
 Create new account
View 432|Reply 4

求$\int_0^{\frac {\pi}4}\cos^82x\mathrm dx$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-11-27 00:05:28 |Read mode
源自知乎提问

题:求 $\int_0^{\frac {\pi}4}\cos^82x\mathrm dx$.









直接算算看,次数不算高.

明显的 $\int_0^{\frac {\pi}4}\cos^82x\mathrm dx=\frac 12\int_0^{\frac {\pi}2}\cos^8t\mathrm dt,$ 下面先考察

$$\int_0^{\frac {\pi}2}\cos^8x\mathrm dx.$$

由分部积分法
\begin{align*}  \end{align*}$$\begin{align*} \int_0^{\frac {\pi}2}\cos^8x\mathrm dx&=\int_0^{\frac {\pi}2}\cos^7x\mathrm d(\sin x)\\[1em] &=\cos^7x\sin x\bigg|_{0}^{\pi/2}-\int_0^{\frac {\pi}2}\sin x\mathrm d(\cos^7x)\\[1em] &=0+7\int_0^{\frac {\pi}2}\cos^6 x\sin^2 x\mathrm dx\\[1em] &=7\int_0^{\frac {\pi}2}\cos^6 x(1-\cos^2 x)\mathrm dx\\[1em] &=7\int_0^{\frac {\pi}2}\cos^6 x-7\int_0^{\frac {\pi}2}\cos^8 x\mathrm dx\\[1em] \iff 8\int_0^{\frac {\pi}2}\cos^8x\mathrm dx&=7\int_0^{\frac {\pi}2}\cos^6 x\mathrm dx\\[1em] \color{red}{\int_0^{\frac {\pi}2}\cos^8x\mathrm dx}\ &\color{red}{=\frac 78\int_0^{\frac {\pi}2}\cos^6 x\mathrm dx}, \end{align*}

对 $\int_0^{\frac {\pi}2}\cos^6 x\mathrm dx$ 重复这一过程,进行迭代有 $\int_0^{\frac {\pi}2}\cos^6 x\mathrm dx=\frac 56\int_0^{\frac {\pi}2}\cos^4 x\mathrm dx,$ 再次迭代两次,则

\begin{align*} \color{red}{\int_0^{\frac {\pi}2}\cos^8x\mathrm dx}\ &=\frac 78\cdot \frac 56\cdot \frac 34\cdot \frac 12\int_0^{\frac {\pi}2}\mathrm dx\\[1em] &=\frac {7!!}{8!!}\cdot \frac {\pi}2. \end{align*}

从而 $\int_0^{\frac {\pi}4}\cos^82x\mathrm dx=\frac {105\pi}{1536}.$

PS:真的忘记了,这么好玩的积分~.

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-11-27 02:13:34
高数教材分部积分例题必有

1

Threads

17

Posts

1097

Credits

Credits
1097

Show all posts

AzraeL Posted at 2021-11-27 10:32:54
根据$ {\rm B}(p,q)=2\int_0^{\frac{\pi}2}\cos^{2p-1}x\sin^{2q-1}x{\rm d}x $,有
\[ \int_0^{\frac{\pi}4}\cos^82x{\rm d}x=\frac12\int_0^{\frac{\pi}2}\cos^8x{\rm d}x=\frac14{\rm B}(\frac92,\frac12)=\frac{\Gamma(\frac92)\Gamma(\frac12)}{4\Gamma(5)}=\frac{7!!\pi}{4^3\cdot4!}=\frac{105\pi}{1536} \]

Rate

Number of participants 2威望 +3 Collapse Reason
zhcosin + 2
isee + 1 赞~

View Rating Log

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2021-12-17 22:29:20
源自知乎提问,题: $A$ 由 $x^{\frac 23}+y^{\frac 23}=a^{\frac 23}\ (a>0)$ 围成的面积.

$x^{\frac 23}+y^{\frac 23}=a^{\frac 23}\ (a>0)$ 的参数方程为 $$x=a\cos^3\theta,\ y=a\sin^3\theta,\ \theta\in[0,2\pi],$$ 所以

\begin{align*} A&=4\left|\int_{0}^{\frac {\pi}2}a\sin^3\theta\left(a\cos^3\theta\right)'\mathrm d\theta\right|\\[1em] &=12a^2\left|\int_{0}^{\frac {\pi}2}\sin^4\theta\left(1-\sin^2\theta\right)\mathrm d\theta\right|\\[1em] &=12a^2\left|\int_{0}^{\frac {\pi}2}\sin^4\theta\mathrm d\theta-\int_{0}^{\frac {\pi}2}\sin^6\theta\mathrm d\theta\right|\\[1em] &=12a^2\left|\frac{3!!}{4!!}\frac {\pi}2-\frac{5!!}{6!!}\frac {\pi}2\right|\\[1em] &=\frac {3\pi a^2}8. \end{align*}

其中 $$\int_0^{\frac {\pi}2}\sin^{2n}\theta\mathrm d\theta=\frac {(2n-1)!!}{(2n)!!}\cdot \frac {\pi}2.$$

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2022-1-18 20:57:18
源自知乎提问


这里 $\int \tan ^nx\mathrm dx$ 也可以有递推式:

\begin{align*} I_n=\int\tan^nx\mathrm dx &=\int\tan^{n-2}(\tan^2x+1-1)\mathrm dx\\[1em] &=\int\tan^{n-2}\sec^2x\mathrm dx-I_{n-2}\\[1em] &=\int\tan^{n-2}\mathrm d\tan x-I_{n-2}\\[1em] &=\frac {1}{n-1}\tan^{n-1}x-I_{n-2} \end{align*}

然后就好处理了……

手机版Mobile version|Leisure Math Forum

2025-4-21 14:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list