Forgot password?
 Create new account
View 417|Reply 5

这个积分从左到右这一步是如何变过去的?

[Copy link]

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

TSC999 Posted at 2021-12-7 18:26:49 |Read mode
见下图,积分的最终结果等于 Pi/2,这个不需要再演算了。

我的问题是从左到右这一步是如何变过去的?

从左到右是如何变来的.png

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2021-12-7 18:50:50
回复 1# TSC999

考察
\[\int_0^\pi(\frac{\pi}{2}-x)|\cos(x)|\sin(x)dx\]
令$y=\frac{\pi}{2}-x$,就有
\[原式=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}y|\sin(y)|\cos(y)dy\]
注意这玩意明摆着奇函数,积分值就是$0$,于是...

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2021-12-7 20:01:59
其实那个是任意的$\sin x$的函数都成立。因为
\[\int_{0}^{\pi}xf(\sin x)dx\xlongequal{x=\pi-t}\int_{\pi}^{0}(\pi-t)f(\sin(\pi-t))d(\pi-t)=\int_{0}^{\pi}(\pi-t)f(\sin t)dt=\pi\int_{0}^{\pi}f(\sin x)dx-\int_{0}^{\pi}xf(\sin x)dx\]

然后一移项就好了。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-12-7 20:09:21
和什么区间再现很像

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

 Author| TSC999 Posted at 2021-12-24 11:17:45
谢谢各位老师的解答! 把老师们的解答整理如下:

是如何变换的.png

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-12-24 13:06:01
回复 5# TSC999


尝试下 TeX 数学公式,论坛里二级页面(即看帖子状态下)最下面就有代码即时展示区,kuing 曰 草稿本,也很形象

手机版Mobile version|Leisure Math Forum

2025-4-21 13:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list