Forgot password?
 Create new account
View 207|Reply 0

柯西不等式积分形式的应用

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-2-5 22:43:45 |Read mode
源自知乎提问,似乎大家不太关心取“=”





题:设非负函数 $f\in \mathrm R[a,b],$ 证明不等式

$$\left(\int_a^b f(x)\cos x \mathrm{~d}x\right)^2+\left(\int_a^b f(x)\sin x\mathrm \ dx\right)^2\leqslant\left(\int_a^b f(x) \mathrm {~d}x\right)^2.$$

学习了其它答主的解法,直接给本题一个文字过程.

由柯西不等式积分形式有

$$\left(\int_a^b f(x) \mathrm{~d}x\right) \left(\int_a^b f(x)\cos^2 x \mathrm{~d}x\right)\geqslant \left(\int_a^b f(x)\cos x \mathrm{~d}x\right)^2,$$

同理有

$$\left(\int_a^b f(x) \mathrm{~d}x\right) \left(\int_a^b f(x)\sin^2 x \mathrm{~d}x\right)\geqslant \left(\int_a^b f(x)\sin x \mathrm{~d}x\right)^2,$$

两式相加即证.

手机版Mobile version|Leisure Math Forum

2025-4-21 13:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list