Forgot password?
 Create new account
View 129|Reply 1

$\lim_{n \to \infty}\sqrt[n]{n^k}$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-7-3 22:05:50 |Read mode
源自知乎提问





: $k\in \mathrm Z_+,\;\lim_{n \to \infty}\sqrt[n]{n^k}=1.$




应用 斯托尔茨 ( O.Stolz ) 定理:

设数列 $\{y_n\}$ 单调递增且 $\lim_{n\to \infty} y_n=+\infty,$ 若 $\lim_{n\to \infty}\frac {x_n-x_{n-1}}{y_n-y_{n-1}}$ 存在(有限或 $\pm \infty$ ),则 $\lim_{n\to \infty}\frac {x_n}{y_n}=\lim_{n\to \infty}\frac {x_n-x_{n-1}}{y_n-y_{n-1}}.$

以下 $\exp f(x)=\mathrm e^{f(x)}$

\begin{align*} \lim_{n \to \infty}\sqrt[n]{n^k}&=\lim_{n \to \infty}\exp\bigg(\frac kn\cdot \ln n \bigg)\\[1em] &=\exp\bigg(k\lim_{n\to \infty}\frac {\ln n}n\bigg)\\[1em] &=\exp\bigg(k\lim_{n\to \infty}\frac {\ln n-\ln (n-1)}{n-(n-1)}\bigg)\\[1em] &=\exp\bigg(k\lim_{n\to \infty}\ln \frac n{n-1}\bigg)\\[1em] &=\exp(0)\\[1em] &=1.  \end{align*}
isee=freeMaths@知乎

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2022-7-3 22:47:17
利用 `\ln x < \frac {x-1}{\sqrt x}(x>1)` 得
\[\sqrt[n]n=\exp \frac {\ln n}n<\exp \frac {n-1}{n\sqrt n}\]

手机版Mobile version|Leisure Math Forum

2025-4-21 18:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list