Forgot password?
 Create new account
View 102|Reply 0

$L^\infty[0,1]$没有可数的拓扑基

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-10-24 03:48:14 |Read mode
Last edited by hbghlyj at 2023-6-9 11:16:00基 (拓撲學)
math.stackexchange.com/questions/2893487
对任意$t\in (0,1)$, 定义$f_t=\chi_{[0,t]}$.
则对任意不同的$s,t\in(0,1)$有$\|f_t-f_s\|_\infty=1$.
所以$L^\infty$中的开球$B(f_t,1/2),\;t\in (0,1)$两两不相交.
因为$B(f_t,1/2)$是开集,所以包含一个$L^\infty[0,1]$的拓扑基的元素,所以$L^\infty[0,1]$的拓扑基都是不可数的.

手机版Mobile version|Leisure Math Forum

2025-4-21 18:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list