|
2个独立的泊松分布 和、条件、差
MSE
独立随机变量 $X,Y$ 服从参数为 $a,b$ 的泊松分布.
\begin{eqnarray*}
\Pr(X+Y=k) &=& \sum_{p=0}^\infty \sum_{q=0}^\infty \mathrm{e}^{-a-b} \frac{a^p}{p!} \frac{b^q}{q!} \mathbf{1}_{p+q=k} = \mathrm{e}^{-a-b}\sum_{p=0}^{k} \frac{a^p}{p!} \frac{b^{k-p}}{(k-p)!} \\ &=& \mathrm{e}^{-a-b} \frac{1}{k!} \cdot \sum_{p=0}^{k} \binom{k}{p} a^p b^{k-p} = \mathrm{e}^{-a-b} \frac{1}{k!} \left(a+b\right)^k
\end{eqnarray*}(最后一个等式使用二项式定理) 故 $X+Y∼\text{Poi}(a+b)$.
\begin{eqnarray*}
\Pr\left(X=k \mid X+Y=n\right) &=& \frac{\Pr\left(X=k, Y=n-k\right)}{\Pr(X+Y=n)} \\ &=& \frac{\exp(-a) a^k/k! \cdot \exp(-b) b^{n-k}/(n-k)!}{\exp(-a-b) \cdot (a+b)^n/n!} \\
&=& \binom{n}{k} \left(\frac{a}{a+b}\right)^k \left(1-\frac{a}{a+b}\right)^{n-k}
\end{eqnarray*}故 $(X \mid X+Y=n )\sim \operatorname{Bin}\left(n, \frac{a}{a+b} \right)$.
$X-Y$的分布称为Skellam distribution.
\begin{eqnarray*}
\Pr(X-Y=n) &=& \sum_{p=0}^\infty \sum_{q=0}^\infty \mathrm{e}^{-a-b} \frac{a^p}{p!} \frac{b^q}{q!} \mathbf{1}_{p-q=n} = \mathrm{e}^{-a-b}\sum_{q=\max(0,-n)}^{\infty} \frac{a^{n+q}}{(n+q)!} \frac{b^{q}}{q!} \\ &=& \begin{cases} a^n \left(a b\right)^{-n/2} I_n\left(2 \sqrt{a b}\right) & n \geqslant 0 \cr b^{-n} \left(a b\right)^{n/2} I_{-n}\left(2 \sqrt{a b}\right) & n < 0\end{cases} = \left(\frac{a}{b}\right)^{n/2} I_{\vert n\vert} \left(2 \sqrt{a b}\right)
\end{eqnarray*}where $I_n(x)$ is the modified Bessel function of the first kind, 如下图
import graph;
import gsl;
unitsize(1cm);
real xmin = 0;
real xmax = 3;
real f0(real x) { return I(0, x); }
real f1(real x) { return I(1, x); }
path g0 = graph(f0, xmin, xmax);
path g1 = graph(f1, xmin, xmax);
xaxis(Label("$x$",align=2E),Ticks("%f",NoZero,step=1),xmax=3.5);
yaxis(Label("$y$",align=2N),Ticks("%f",NoZero,step=1));
draw(g0, blue);
draw(g1, red);
label("$I_0(x)$", (xmax, f0(xmax)), E, blue);
label("$I_1(x)$", (xmax, f1(xmax)), E, red);
|
|