|
Author |
hbghlyj
Posted at 2023-6-17 21:04:25
此外,男顾客数和女顾客数是独立的随机变量
A8LectureNotes_MT22_24Sep2022.pdf page 70
Remark 7.7. In fact, it is not too hard to prove something stronger. If $L$ is the process of unmarked points, then $L$ is a Poisson process of rate $(1 - p)λ$, and the processes $L$ and $M$ are independent. 以下网站有证明:
14.5: Thinning and Superpositon
For \(t \ge 0\), \(M_t\) has the Poisson distribution with parameter \(p r\), \(W_t\) has the Poisson distribution with parameter \((1 - p) r\), and \(M_t\) and \(W_t\) are independent.
Proof. The important observation is that the conditional distribution of \(M_t\) given \(N_t = n\) is binomial with parameters \(n\) and \(p\). Thus for \(j \inN\) and \(k \inN\),
\begin{align*} \Pr(M_t = j, W_t = k) & = \Pr(M_t = j, N_t = j + k) = \Pr(N_t = j + k) \Pr(M_t = j \mid N_t = j + k) \\ & = e^{-r t} \frac{(r t)^{j + k}}{(j + k)!} \frac{(j + k)!}{j! k!} p^j (1 - p)^k \\ & = e^{-p r t} \frac{(p r t)^j}{j!} e^{-(1 - p) r t} \frac{\left[(1 - p) r t\right]^k}{k!}=\Pr(M_t = j)\Pr(W_t = k) \end{align*} |
|