Forgot password?
 Register account
View 1669|Reply 6

[数列] 数列求最近整数

[Copy link]

14

Threads

29

Posts

224

Credits

Credits
224

Show all posts

依然饭特稀 Posted 2019-2-26 10:12 |Read mode
Last edited by hbghlyj 2025-3-19 18:13$\an$ 满足 $a_1=1, a_{n+1} a_n=a_n^2+2 a_n+1$ ,则使得 $\left|\sqrt{a_{2018}}-m\right|$ 值最小的整数 $m=$
A. 62
B. 63
C. 64
D. 65

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2019-2-26 10:59
6.3557284779258807E+001是$\sqrt{a_{2018}}$的值63.56,那么m取64
程序算的
var
  i:longint;
  a,b:real;
begin
  a:=1;
  for i:=1 to 2017 do
  begin
    b:=a+1/a+2;
    a:=b;
  end;
  writeln(sqrt(a));
end.

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2019-2-26 11:43
Last edited by realnumber 2019-2-26 11:54可用数学归纳法证明$2n-1<a_n<2n+1+\ln n$
通项公式应该解不出的,所以就用不等式去估计,$a_{n+1}=a_n+2+\frac{1}{a_n}>a_n+2$这样得到左边,右边一个凑的,一开始$2n+1+\frac{1}{n}$试了下不对,换成$\ln{n}$就成立了,好吧,原因也不是很明白,当然不是唯一的.也总有更好的办法.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2019-2-26 12:11
回复 1# 依然饭特稀


显然我们有
\[a_{n+1}=a_n+2+\frac{1}{a_n}>a_n+2\]
于是有
\[a_n>2n-1\]
但实际上可以更进一步,因为$a_2=4$,对于$n>2$,有$a_n>2n$
另一方面有
\[a_{n+1}-a_n=2+\frac{1}{a_n}\]
\[a_n-a_1=2(n-1)+\sum_{k=1}^{n-1}\frac{1}{a_k}=2(n-1)+a_1+\sum_{k=2}^{n-1}\frac{1}{a_k}\]
\[a_n=2n+\sum_{k=2}^{n-1}\frac{1}{a_k}<2n+\sum_{k=2}^{n-1}\frac{1}{2k}<2n+\frac{1}{2}\ln(n-1)\]

最终带入$n=2018$会有
\[\sqrt{2·2018}<\sqrt{a_{2018}}<\sqrt{2·2018+\frac{1}{2}\ln(2017)}\]
\[63.5295<\sqrt{a_{2018}}<63.5595\]

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2019-2-26 13:46
无标题1.png

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-2-26 13:54
回复 5# 游客

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2019-2-26 14:00
回复 5# 游客

可是 bn 这个递推的放缩处理通常也是先两边平方

Mobile version|Discuz Math Forum

2025-6-1 19:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit