Forgot password?
 Create new account
View 2080|Reply 3

[不等式] 请教一个指数不等式题

[Copy link]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted at 2014-12-10 21:39:50 |Read mode
指对数不等式.png

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2014-12-10 22:29:37

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-12-11 06:58:47
Last edited by 战巡 at 2014-12-11 07:10:00回复 1# 等待hxh


开发一种新方法:

这个等价于证明:
\[\sum_{i=0}^n\frac{n^i}{i!}e^{-n}>\frac{1}{2}\]
\[P(X\le n)>\frac{1}{2}, X\sim POI(n)\]
而对于$P(X\le m)=\frac{1}{2}$的这个$m$,显然就是泊松分布的中位数
对于泊松分布,可知其偏度(Skewness)为:
\[E[(\frac{X-\mu}{\sigma})^3]=E[(\frac{X-n}{\sqrt{n}})^3]=\sum_{i=0}^\infty (\frac{i-n}{\sqrt{n}})^3\frac{n^i}{i!}e^{-n}=\frac{1}{\sqrt{n}}>0\]
因此泊松分布为正偏分布,而且由于泊松是单峰分布,就有其均值$n$是大于中位数$m$,因此有
\[P(X\le n)>P(X\le m)=\frac{1}{2}\]

又显然当$n\to \infty$时,有偏度趋于0,也就是中位数趋于均值
因此
\[\lim_{n\to \infty}P(X\le n)=\frac{1}{2}\]

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2014-12-11 14:28:55
高科技,只能潜了

手机版Mobile version|Leisure Math Forum

2025-4-21 01:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list