Forgot password?
 Create new account
View 1951|Reply 7

[函数] 二次函数的整数零点问题

[Copy link]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2017-11-9 11:56:13 |Read mode
Last edited by 敬畏数学 at 2017-11-9 14:47:00函数$f(x)$,若存在$x_0\inZ$,使得$|f(x_0)|\leqslant\frac{1}{4}$,称$x_0$为函数$f(x)$的“近零点”,若$f(x)=ax^2+bx+c(a>0)$有四个不同的“近零点”,则$a$的最大值____?

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2017-11-9 11:57:28
论坛搜索“近零点”即得:kuing.cjhb.site/forum.php?mod=viewthread&tid=3879

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2017-11-9 12:05:50
回复 2# kuing
好好读下,觉得这项工程很大啊!谢谢。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted at 2017-11-9 14:24:52
Last edited by 游客 at 2017-11-9 14:33:00 未命名.PNG

b和c只是抛物线的平移,运动又是相对的,给定g(x),平移区间就行.
对于定长度区间,区间中点离对称轴越远,函数值之差越大.
四个数依次相差1,最近的就是±0.5, ±1.5 .

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2017-11-9 14:38:23
回复  kuing
好好读下,觉得这项工程很大啊!谢谢。
敬畏数学 发表于 2017-11-9 12:05

大工程是为了让解答过程完全脱离图象,绝对严格,只是不具观赏性。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2017-11-9 14:40:21
回复 4# 游客
哈哈!妙。我觉得最大时,应该$g(\frac{3}{2})-g(\frac{1}{2})=\frac{1}{2}$。本质相似。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2017-11-9 14:43:31
回复 4# 游客
超级赞。哈哈,解释得灰常满意。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2017-11-9 14:45:37
回复 5# kuing
确实,非常严谨!我再仔细拜读一下。

手机版Mobile version|Leisure Math Forum

2025-4-21 22:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list