Forgot password?
 Create new account
View 1638|Reply 9

$3(x^2+y^2+z^2)^2-6(x^4+y^4+z^4)=(2t^2-x^2-y^2-z^2)^2$

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2013-6-15 02:13:10 |Read mode
平面上,正三角形边长 $t$,某点到三顶点距离 $x$, $y$, $z$,则
\[3(x^2+y^2+z^2)^2-6(x^4+y^4+z^4)=(2t^2-x^2-y^2-z^2)^2\]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2013-6-15 20:31:01
来看看

不会也是5吧

猜错了,15.

0

Threads

3

Posts

16

Credits

Credits
16

Show all posts

魔幻水果 Posted at 2013-6-15 21:00:25
我来看看我的UID

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

 Author| kuing Posted at 2013-6-15 21:01:04
意头不错……

1

Threads

1

Posts

11

Credits

Credits
11

Show all posts

测试号 Posted at 2013-9-3 21:43:17
测试一下

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

 Author| kuing Posted at 2015-9-2 18:38:34
$(a^2+b^2+c^2)(ab+bc+ca)^2 - (a^2+2bc)(b^2+2ca)(c^2+2ab)=(a-b)^2(b-c)^2(c-a)^2 $

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2022-8-13 15:10:18
kuing 发表于 2015-9-2 18:38
$(a^2+b^2+c^2)(ab+bc+ca)^2 - (a^2+2bc)(b^2+2ca)(c^2+2ab)=(a-b)^2(b-c)^2(c-a)^2 $
本帖是测试帖吗?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

 Author| kuing Posted at 2022-8-13 15:18:24
我也忘了为啥会在这儿回 6# 的恒等式……

3147

Threads

8495

Posts

610K

Credits

Credits
66173
QQ

Show all posts

hbghlyj Posted at 1 min. ago

Pompeiu's theorem
通过点 P 和到等边三角形顶点的长度 PA、PB 和 PC,可以定义两个等边三角形,其边长分别为
\[t=\sqrt{\frac {1}{2}\left(PA^{2}+PB^{2}+PC^{2}\pm 4{\sqrt {3}}\triangle _{(PA,PB,PC)}\right)}\]
符号 △ 表示边长分别为 PA、PB 和 PC 的三角形的面积。

Comment

咋又顶起了这个测试帖……  Posted at 23 s. ago

手机版Mobile version|Leisure Math Forum

2025-4-21 01:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list