Forgot password?
 Create new account
View 1657|Reply 12

[几何] 【这只是个旧测试帖】$3(x^2+y^2+z^2)^2-6(x^4+y^4+z^4)=(2t^2-x^2-y^2-z^2)^2$

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-6-15 02:13:10 |Read mode
Last edited by kuing at 12 hr ago平面上,正三角形边长 $t$,某点到三顶点距离 $x$, $y$, $z$,则
\[3(x^2+y^2+z^2)^2-6(x^4+y^4+z^4)=(2t^2-x^2-y^2-z^2)^2\]

Comment

$t$有两个正根,由Weitzenböck's inequality$$PA^2+PB^2+PC^2-4\sqrt3\S{(PA,PB,PC)}\ge0$$  Posted at 12 hr ago

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-6-15 20:31:01
来看看

不会也是5吧

猜错了,15.

0

Threads

3

Posts

16

Credits

Credits
16

Show all posts

魔幻水果 Posted at 2013-6-15 21:00:25
我来看看我的UID

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2013-6-15 21:01:04
意头不错……

1

Threads

1

Posts

11

Credits

Credits
11

Show all posts

测试号 Posted at 2013-9-3 21:43:17
测试一下

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2015-9-2 18:38:34
$(a^2+b^2+c^2)(ab+bc+ca)^2 - (a^2+2bc)(b^2+2ca)(c^2+2ab)=(a-b)^2(b-c)^2(c-a)^2 $

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2022-8-13 15:10:18
kuing 发表于 2015-9-2 18:38
$(a^2+b^2+c^2)(ab+bc+ca)^2 - (a^2+2bc)(b^2+2ca)(c^2+2ab)=(a-b)^2(b-c)^2(c-a)^2 $
本帖是测试帖吗?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2022-8-13 15:18:24
我也忘了为啥会在这儿回 6# 的恒等式……

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 12 hr ago

Pompeiu's theorem
通过点 P 和到等边三角形顶点的长度 PA、PB 和 PC,可以定义两个等边三角形,其边长分别为
\[t=\sqrt{\frac {1}{2}\left(PA^{2}+PB^{2}+PC^{2}\pm 4{\sqrt {3}}\triangle _{(PA,PB,PC)}\right)}\]
符号 △ 表示边长分别为 PA、PB 和 PC 的三角形的面积。

Comment

咋又顶起了这个测试帖……  Posted at 12 hr ago

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 12 hr ago
def dist2(P1, P2):
    return (P1[0] - P2[0])**2 + (P1[1] - P2[1])**2
x, y = symbols('x, y')
A, B, C = (2, 0), (-1, sqrt(3)), (-1, -sqrt(3))
P = (x, y)
AP2, BP2, CP2 = dist2(A, P), dist2(B, P), dist2(C, P)
print('AP^2 =', expand(AP2))
print('BP^2 =', expand(BP2))
print('CP^2 =', expand(CP2))
fA = AP2 - BP2 - CP2
print('f_A =', expand(fA))
print('4*BP^2*CP^2 - f_A^2 =', factor(4*BP2*CP2 - fA**2))
# AP2 = BP2 + CP2 if and only if f_A >= 0 and P is on circle
fB = BP2 - AP2 - CP2
print('f_B =', expand(fB))
print('4*AP^2*CP^2 - f_B^2 =', factor(4*AP2*CP2 - fB**2))
# BP2 = AP2 + CP2 if and only if f_B >= 0 and P is on circle
fC = CP2 - AP2 - BP2
print('f_C =', expand(fC))
print('4*AP^2*BP^2 - f_C^2 =', factor(4*AP2*BP2 - fC**2))
# CP2 = AP2 + BP2 if and only if f_C >= 0 and P is on circle
print('f_A and f_B are tangent on', (solve(resultant(fA, fB, y)), solve(resultant(fA, fB, x))))
print('f_A and f_C are tangent on', (solve(resultant(fA, fC, y)), solve(resultant(fA, fC, x))))
print('f_B and f_C are tangent on', (solve(resultant(fB, fC, y)), solve(resultant(fB, fC, x))))

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 12 hr ago
设 $\triangle A B C$ 为一个等边三角形,面积为 $S_0$,$P$ 为其内部一点。
$S^*$ 表示边长为 $P A,P B,P C$ 的三角形的面积,$S_1,S_2,S_3$ 分别为 $\triangle B C P,\triangle C A P,\triangle A B P$ 的面积。则
\[
S^* S_0=S_1 S_2+S_2 S_3+S_3 S_1
\]

手机版Mobile version|Leisure Math Forum

2025-4-21 14:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list