Last edited by hbghlyj at yesterday 18:29\begin{aligned} & \frac{\sin A}{\sin B \sin C}+\frac{\cos A}{\sin A}=\frac{\sin ^2 A+\sin B \sin C \cos A}{\sin A \sin B \sin C}=\frac{a^2+b c \cos A}{b c \sin A} \\ & =\frac{b^2+c^2+a^2}{2 b c \sin A}=\frac{b^2+c^2+b^2+c^2-2 b c \cos A}{2 b c \sin A} \geq \frac{4 b c-2 b c \cos A}{2 b c \sin A} \\ & =\frac{2-\cos A}{\sin A} \geq \sqrt{3}\end{aligned}