Forgot password?
 Register account
View 1049|Reply 14

[函数] 已知a、b、c分别对应着A、B、C的边,求$\frac{a}{b\sin C}+\frac{1}{\tan A}$的最小值

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2025-4-5 21:24 |Read mode
Last edited by hbghlyj 2025-4-8 16:04抖音中有人给出答案是√3,但网页上和小猿搜题都给出了1和2两个答案。
仔细看了下,两个答案的解答过程都有问题。

抖音中引用了外森比克不等式。如果不用的话,是否也可以求出来呢?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-4-5 21:36
\begin{align*}
\frac a{b\sin C}+\frac1{\tan A}&=\frac{\sin A}{\sin B\sin C}+\frac1{\tan A}\\
&=\frac{2\sin A}{\cos(B-C)+\cos A}+\frac1{\tan A}\\
&\geqslant\frac{2\sin A}{1+\cos A}+\frac{\cos A}{\sin A}\\
&=\frac{\cos A+2-\cos^2A}{(1+\cos A)\sin A}\\
&=\frac{2-\cos A}{\sin A},
\end{align*}
然后
\[\cos A+\sqrt3\sin A\leqslant2\riff\frac{2-\cos A}{\sin A}\geqslant\sqrt3.\]

Comment

太厉害了!💯  Posted 2025-4-5 21:39

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2025-4-19 15:20
Last edited by hbghlyj 2025-4-19 18:29新高考数学解题之路研讨群(群号60519007)内的一个网友的解答:\begin{aligned} & S=\frac{\sin A}{\sin B \sin C}+\frac{1}{\tan A}=\frac{2 \sin A}{\cos (B-C)-\cos (B+C)}+\frac{1}{\tan A} \\ & \geqslant \frac{2 \sin A}{1+\cos A}+\frac{1}{\tan A}=2 \tan \frac{A}{2}+\frac{1-\tan ^2 \frac{A}{2}}{2 \tan \frac{A}{2}}=\frac{3}{2} \tan \frac{A}{2}+\frac{1}{2 \tan \frac{A}{2}} \geqslant \sqrt{3} \\ & B=C \cdot \frac{A}{2}=\frac{\pi}{6}\end{aligned}

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-4-19 15:41
Last edited by kuing 2025-4-19 15:51
其妙 发表于 2025-4-19 15:20
新高考数学解题之路研讨群(群号60519007)内的一个网友的解答:
噢,用半角公式,更简洁一些

PS、看群昵称及排版风格,似乎是 hnsredfox_007_(怎么没帖子?
——哦,还有另一个号:007,没错,在这帖楼上还确认过

Comment

都是原人教论坛的老熟人了  Posted 2025-4-19 16:13
嗯(⊙v⊙)嗯  Posted 2025-4-19 16:14

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2025-4-19 16:15
Last edited by hbghlyj 2025-4-19 18:29\begin{aligned} & \frac{\sin A}{\sin B \sin C}+\frac{\cos A}{\sin A}=\frac{\sin ^2 A+\sin B \sin C \cos A}{\sin A \sin B \sin C}=\frac{a^2+b c \cos A}{b c \sin A} \\ & =\frac{b^2+c^2+a^2}{2 b c \sin A}=\frac{b^2+c^2+b^2+c^2-2 b c \cos A}{2 b c \sin A} \geq \frac{4 b c-2 b c \cos A}{2 b c \sin A} \\ & =\frac{2-\cos A}{\sin A} \geq \sqrt{3}\end{aligned}
妙不可言,不明其妙,不着一字,各释其妙!

277

Threads

546

Posts

5409

Credits

Credits
5409

Show all posts

力工 Posted 2025-4-20 15:22
是这个?$a^2+b^2+c^2\geqslant 4\sqrt{3}S$.

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-4-20 15:44
补充个外森比克不等式的维基链接

Comment

上不了。  Posted 2025-4-20 16:23
Wir müssen wissen, wir werden wissen.

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-4-20 19:01
3# 被 @hbghlyj 编辑后,作者的信息没了 4# 的回复就变得无理头

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2025-4-27 13:14
Last edited by hbghlyj 2025-4-27 17:37外森比克不等式是这样来做本题的。
\begin{aligned}
& \frac{a^2}{a b \sin C}+\frac{\cos A}{\sin A}=\frac{a^2}{b c \sin A}+\frac{\cos A}{\sin A} \\
& =\frac{1}{\sin A}\left(\frac{a^2}{b c}+\cos A\right)=\frac{1}{\sin A}\left(\frac{a^2}{b c}+\frac{b^2+c^2-a^2}{2b c}\right) \\
& =\frac{a^2+b^2+c^2}{2 b c \sin A} \geqslant \frac{4 \sqrt{3} S}{4S}=\sqrt{3}
\end{aligned}

Comment

这样变是不是复杂了?分母直接变成面积  Posted 2025-4-27 15:04

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-4-27 17:12
力工 点评
这样变是不是复杂了?分母直接变成面积
是的,直接变面积显然更简洁一些
\begin{align*}
\frac a{b\sin C}+\frac1{\tan A}&=\frac{a^2}{ab\sin C}+\frac{2bc\cos A}{2bc\sin A}\\
&=\frac{a^2}{2S}+\frac{b^2+c^2-a^2}{4S}\\
&=\frac{a^2+b^2+c^2}{4S}\geqslant\sqrt3.
\end{align*}

Mobile version|Discuz Math Forum

2025-6-4 17:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit