Forgot password?
 Create new account
View 297|Reply 7

[函数] 已知a、b、c分别对应着A、B、C的边,求$\frac{a}{b\sin C}+\frac{1}{\tan A}$的最小值

[Copy link]

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

走走看看 Posted at 2025-4-5 21:24:46 |Read mode
Last edited by hbghlyj at 2025-4-8 16:04:09抖音中有人给出答案是√3,但网页上和小猿搜题都给出了1和2两个答案。
仔细看了下,两个答案的解答过程都有问题。

抖音中引用了外森比克不等式。如果不用的话,是否也可以求出来呢?

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at 2025-4-5 21:36:25
\begin{align*}
\frac a{b\sin C}+\frac1{\tan A}&=\frac{\sin A}{\sin B\sin C}+\frac1{\tan A}\\
&=\frac{2\sin A}{\cos(B-C)+\cos A}+\frac1{\tan A}\\
&\geqslant\frac{2\sin A}{1+\cos A}+\frac{\cos A}{\sin A}\\
&=\frac{\cos A+2-\cos^2A}{(1+\cos A)\sin A}\\
&=\frac{2-\cos A}{\sin A},
\end{align*}
然后
\[\cos A+\sqrt3\sin A\leqslant2\riff\frac{2-\cos A}{\sin A}\geqslant\sqrt3.\]

Comment

太厉害了!💯  Posted at 2025-4-5 21:39

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at yesterday 15:20
Last edited by hbghlyj at yesterday 18:29新高考数学解题之路研讨群(群号60519007)内的一个网友的解答:\begin{aligned} & S=\frac{\sin A}{\sin B \sin C}+\frac{1}{\tan A}=\frac{2 \sin A}{\cos (B-C)-\cos (B+C)}+\frac{1}{\tan A} \\ & \geqslant \frac{2 \sin A}{1+\cos A}+\frac{1}{\tan A}=2 \tan \frac{A}{2}+\frac{1-\tan ^2 \frac{A}{2}}{2 \tan \frac{A}{2}}=\frac{3}{2} \tan \frac{A}{2}+\frac{1}{2 \tan \frac{A}{2}} \geqslant \sqrt{3} \\ & B=C \cdot \frac{A}{2}=\frac{\pi}{6}\end{aligned}

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at yesterday 15:41
Last edited by kuing at yesterday 15:51
其妙 发表于 2025-4-19 15:20
新高考数学解题之路研讨群(群号60519007)内的一个网友的解答:

噢,用半角公式,更简洁一些

PS、看群昵称及排版风格,似乎是 hnsredfox_007_(怎么没帖子?
——哦,还有另一个号:007,没错,在这帖楼上还确认过

Comment

都是原人教论坛的老熟人了  Posted at yesterday 16:13
嗯(⊙v⊙)嗯  Posted at yesterday 16:14

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at yesterday 16:15
Last edited by hbghlyj at yesterday 18:29\begin{aligned} & \frac{\sin A}{\sin B \sin C}+\frac{\cos A}{\sin A}=\frac{\sin ^2 A+\sin B \sin C \cos A}{\sin A \sin B \sin C}=\frac{a^2+b c \cos A}{b c \sin A} \\ & =\frac{b^2+c^2+a^2}{2 b c \sin A}=\frac{b^2+c^2+b^2+c^2-2 b c \cos A}{2 b c \sin A} \geq \frac{4 b c-2 b c \cos A}{2 b c \sin A} \\ & =\frac{2-\cos A}{\sin A} \geq \sqrt{3}\end{aligned}
妙不可言,不明其妙,不着一字,各释其妙!

手机版Mobile version|Leisure Math Forum

2025-4-20 12:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list