Forgot password?
 Create new account
View 210|Reply 10

[函数] 求助:已知cos(a-b)+sina+sinb=0,求cos(a-b)最小值?a,b \in [0,2\pi]

[Copy link]

1

Threads

3

Posts

21

Credits

Credits
21

Show all posts

kkgg Posted at 2024-5-27 22:15:41 |Read mode
求助:已知cos(a-b)+sina+sinb=0,求cos(a-b)最小值?a,b \in [0,2\pi]

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-5-27 22:57:47
类似于这题:kuing.cjhb.site/forum.php?mod=viewthread&tid=12377 ,方法照搬:令
\[t=\cos\frac{a-b}2,\]
则对条件和差化积得
\begin{align*}
0&=\cos(a-b)+2\cos\frac{a-b}2\sin\frac{a+b}2\\
&=2t^2-1+2t\sin\frac{a+b}2,
\end{align*}
由此可得
\[(2t^2-1)^2\leqslant4t^2\riff t^2\geqslant1-\frac{\sqrt3}2,\]
所以
\[\cos(a-b)=2t^2-1\geqslant1-\sqrt3.\]

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-5-28 01:07:59
Last edited by 睡神 at 2024-5-28 01:21:00作圆$C$:$x^2+(y-1)^2=1$,在圆$C$上取两点$A(\cos\alpha,1+\sin\alpha),B(\cos\beta,1+\sin\beta)$

则$\vv{OA}\cdot \vv{OB}=\cos\alpha\cos\beta+(1+\sin\alpha)(1+\sin\beta)=1,|\vv{OC}|=|\vv{AC}|=1$

取$AB$的中点$M$

则$1=\vv{OA}\cdot \vv{OB}=|\vv{OM}|^2-|\vv{AM}|^2\le (|\vv{OC}|+|\vv{CM}|)^2-(|\vv{AC}|^2-|\vv{CM}|^2)=2|\vv{CM}|^2+2|\vv{CM}|$

解得:$|\vv{CM}|\ge \dfrac{\sqrt3-1}{2}$,即$|\vv{CM}|^2\ge 1-\dfrac{\sqrt3}{2}$

所以  $\cos(\alpha-\beta)=\vv{CA}\cdot \vv{CB}=|\vv{CM}|^2-|\vv{AM}|^2=|\vv{CM}|^2-(|\vv{AC}|^2-|\vv{CM}|^2)=2|\vv{CM}|^2-1\ge 1-\sqrt3$
除了不懂,就是装懂

1

Threads

3

Posts

21

Credits

Credits
21

Show all posts

 Author| kkgg Posted at 2024-5-28 09:52:10
睡神 发表于 2024-5-28 01:07
作圆$C$:$x^2+(y-1)^2=1$,在圆$C$上取两点$A(\cos\alpha,1+\sin\alpha),B(\cos\beta,1+\sin\beta)$

则$\ ...
😂题目背景就是这个向量问题,我在想怎么用坐标法解决🙏

1

Threads

3

Posts

21

Credits

Credits
21

Show all posts

 Author| kkgg Posted at 2024-5-28 09:52:55
kuing 发表于 2024-5-27 22:57
类似于这题:https://kuing.cjhb.site/forum.php?mod=viewthread&tid=12377 ,方法照搬:令
\[t=\ ...
感谢感谢😀

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-5-28 13:49:58
kkgg 发表于 2024-5-28 09:52
😂题目背景就是这个向量问题,我在想怎么用坐标法解决🙏
果然还是那个向量题,之前的帖子中就有讨论过:
kuing.cjhb.site/forum.php?mod=viewthread& … &page=1#pid59867

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-5-28 15:06:40
稍微变一下,又可以变成一个几何问题

如图,$\triangle OAB$为单位圆$C$的内接三角形,且$OD\cdot OA=1,BD \perp OA$,若$\triangle ABC$为钝角三角形,求$\triangle ABC$的最小面积
面积最小.png

Comment

这样一变,看起来判若两题了...  Posted at 2024-5-28 15:28
除了不懂,就是装懂

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-5-28 22:23:56
睡神 发表于 2024-5-28 15:06
稍微变一下,又可以变成一个几何问题

如图,$\triangle OAB$为单位圆$C$的内接三角形,且$OD\cdot OA=1,BD ...
几何渣渣弱弱的问一下:取$AB$的中点$M$,连接$OM$,不用向量,用几何法如何证明$OM^2-AM^2=1$?
除了不懂,就是装懂

1

Threads

3

Posts

21

Credits

Credits
21

Show all posts

 Author| kkgg Posted at 2024-5-29 10:47:39
睡神 发表于 2024-5-28 22:23
几何渣渣弱弱的问一下:取$AB$的中点$M$,连接$OM$,不用向量,用几何法如何证明$OM^2-AM^2=1$? ...
$$
\begin{aligned}
& \overrightarrow{O A} \cdot \overrightarrow{O B}=1 \\
\therefore \quad & O A \cdot O B \cdot \cos \theta=1 . \\
\therefore \quad & O A^2+O B^2-2 O A\cdot O B \cos \theta=A B^2=4 M B^2 . \\
\therefore \quad & O A^2+O B^2=4 M B^2+2 \quad (1) \\
\because \quad & O A^2+O B^2=2\left(O M^2+M B^2\right) \quad(2)
\end{aligned}
$$
(2) - (1). 得 $O M^2-M B^2=1$
这算不算几何法?

Comment

噢,看来还是躲不开余弦定理  Posted at 2024-5-29 12:38

手机版Mobile version|Leisure Math Forum

2025-4-20 22:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list