Forgot password?
 Register account
View 336|Reply 6

[几何] 请教一道解三角形的最值题

[Copy link]

48

Threads

15

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted 2024-11-25 23:15 |Read mode
已知$\triangle ABC$的面积为1,内角$ A,B,C$所对的边分别为$a,b,c$,则$b^2 + \dfrac{1}{\sin B} $ 的最小值为
微信图片_20241125231351.jpg
上图是某科网的解答,奇怪的是我去找到了原卷,但是原卷这题竟然自己都没有答案,想请问各位此题是否有比较自然的做法?

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-11-26 07:19
$$S=1\Longleftrightarrow ac\sin B=2$$
$$
\begin{align*}
b^2+\frac{1}{\sin B}
&=\frac{a\sin B}{\sin A}\cdot\frac{c\sin B}{\sin C}+\frac{1}{\sin B}\\
&=\frac{2\sin B}{\sin A\sin C}+\frac{1}{\sin B}\\
&=\frac{4\sin B}{\cos(A-C)-\cos(A+C)}+\frac{1}{\sin B}\\
&=\frac{4\sin B}{\cos(A-C)+\cos B}+\frac{1}{\sin B}\\
&\geq\frac{4\sin B}{1+\cos B}+\frac{1}{\sin B}\\
&=4\tan\frac B2+\frac{1+\tan^2\frac B2}{2\tan \frac B2}\\
&=\frac92\tan\frac B2+\frac12\frac{1}{\tan \frac B2}\\
&\geq3
\end{align*}
$$
易知可取等。

Comment

强😀学习了!  Posted 2024-11-26 09:47
Wir müssen wissen, wir werden wissen.

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2024-11-26 10:19
作内切圆代换 `(a,b,c)=(y+z,z+x,x+y)`,则有 `S=\sqrt{xyz(x+y+z)}=1`,然后由均值
\begin{align*}
b^2+\frac1{\sin B}&=b^2+\frac{ac}2\\
&=(z+x)^2+\frac{(y+z)(x+y)}2\\
&=(z+x)^2+\frac12zx+\frac12y(x+y+z)\\
&\geqslant\frac92zx+\frac12y(x+y+z)\\
&\geqslant2\sqrt{\frac92zx\cdot\frac12y(x+y+z)}\\
&=3.
\end{align*}

Comment

果然三角形面积问题和内切圆总有关系,感觉圆锥曲线里也还挺多的,学习了😀  Posted 2024-11-26 11:14

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2024-11-26 11:37
Last edited by isee 2024-11-26 12:32将多元放缩到一元.

由面积知 $2ac=
\frac4{\sin B}$ ,由余弦定理,均值不等式,有
\begin{align*}
b^2+\frac1{\sin B}&=b^2+\frac{1}{\sin B}\\
&=a^2+c^2-2ac\cos B+\frac1{\sin B}\\
&\geqslant2ac-2ac\cos B+\frac1{\sin B}\\
&=\frac{5-4\cos B}{\sin B},
\end{align*}
再由辅助角公式 \[3\sin B+4\cos B=5\sin(B+\varphi)\leqslant 5\iff 5-4\cos B\geqslant 3\sin B,\]
于是
\begin{align*}
b^2+\frac1{\sin B}&\geqslant\frac{5-4\cos B}{\sin B}\\
&\geqslant\frac{3\sin B}{\sin B}\\[1ex]
&=3.
\end{align*}

取等略.




PS:由辅助角公式,可得\[a\sin x\leqslant \sqrt{a^2+b^2}-b\cos x\iff b\cos x\leqslant \sqrt{a^2+b^2}-a\sin x.\]

Comment

这个方法也很自然,感谢大佬们😋  Posted 2024-11-26 11:55
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-6-5 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit