Forgot password?
 Register account
View 329|Reply 5

[几何] 若三角形中满足 $4\cos C+\cos(A-B)=3$ 则 $a+b=2c$

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2025-1-9 17:25 |Read mode
Rt (如标题所述):若三角形中满足 $4\cos C+\cos(A-B)=3$ , 则 $a+b=2c$.
isee=freeMaths@知乎

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-1-9 17:39
\begin{align*}
4\cos C+\cos(A-B)=3&\iff4(\cos C-1)+1+\cos(A-B)=0\\
&\iff-8\sin^2\frac C2+2\cos^2\frac{A-B}2=0\\
&\iff2\left(\cos\frac{A-B}2+2\sin\frac C2\right)\left(\cos\frac{A-B}2-2\sin\frac C2\right)=0\\
&\iff\cos\frac{A-B}2=2\sin\frac C2\\
&\iff\cos\frac C2\cos\frac{A-B}2=\sin C\\
&\iff\frac{\sin A+\sin B}2=\sin C.
\end{align*}

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 3分成4-1精彩!

View Rating Log

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2025-1-9 18:14
kuing 发表于 2025-1-9 17:39
\begin{align*}
4\cos C+\cos(A-B)=3&\iff4(\cos C-1)+1+\cos(A-B)=0\\
&\iff-8\sin^2\frac C2+2\cos^2\fra ...
原来我最开始时你(过程中)随后有平方差被我无视了,哈哈哈
isee=freeMaths@知乎

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2025-1-25 10:37
分析法(边化角)
\begin{gather*}
a+b=2c\\
\iff (a+b)^2=4c^2\\
\iff c^2+2ab(1+\cos C)=4c^2\\
\iff 2\sin A\sin B(1+\cos C)=3\sin^2C=3(1+\cos C)(1-\cos C)\\
\iff -\left(\cos (A+B)-\cos(A-B)\right)=3-3\cos C \\
\iff 4\cos C+\cos (A+B)=3
\end{gather*}
得证.
isee=freeMaths@知乎

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2025-1-25 11:34
若强制化边
\begin{gather*}
4\cos C+\cos(A-B)=3\\
-4\cos A\cos B+4\sin A\sin B+\cos A\cos B+\sin A\sin B=3\\
25(1-\cos^2A)(1-\cos^2B)=9(1+\cos A\cos B)^2\tag{01}\label{eq01}\\
16\cos^2A\cos^2B-25\cos^2A-25\cos^2B-18\cos A\cos B+16=0\\
(4\cos A\cos B+5\cos A-5\cos B-4) (4\cos A\cos B-5\cos A+5\cos B-4)=0
\end{gather*}
\eqref{eq01} 的因式分解是必须考虑的——降次向待证不等靠近——但也是十分困难的且下一步全部化边后还需要因式分解.

难以为继.
isee=freeMaths@知乎

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-2-11 21:13
5# 最后的因式分解有误,应为:
$$(4\cos A\cos B-5\cos A-5\cos B+4) (4\cos A\cos B+5\cos A+5\cos B+4)=0$$
显然,只能是
$$4\cos A\cos B-5\cos A-5\cos B+4=0$$
代入余弦定理,整理得
$$(a+b-2c)(a-b-c)(a+c-b)(2a+2b-c)=0$$
也只能是 $a+b-2c=0$
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-6-5 01:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit