Forgot password
 Register account
View 222|Reply 6

[几何] 有意思的解三角形问题

[Copy link]

282

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2025-3-31 14:49 |Read mode
Last edited by kuing 2025-3-31 16:11用特殊图形(正三角形)容易得到结果,但直接老实做却有点难。
在$\triangle ABC$中,$\angle BAC=60\du$,$D,E$是边$BC$上的三等分点,$\vv{BD}=\vv{DE}=\vv{EC}$,求$\frac{\sin DAE}{\sin BAD\cdot \sin EAC}$的值($2\sqrt{3}$).

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2025-3-31 15:47
很简单:设 `\triangle ABC` 的面积为 `3S`,则那三个小三角形的面积都为 `S`,则
\[\sin\angle DAE=\frac{2S}{AD\cdot AE},~\sin\angle BAD=\frac{2S}{AB\cdot AD},~\sin\angle CAE=\frac{2S}{AC\cdot AE},\]
所以
\[\frac{\sin\angle DAE}{\sin\angle BAD\sin\angle CAE}=\frac{AB\cdot AC}{2S}=\frac{3AB\cdot AC}{2\S{ABC}}=\frac3{\sin\angle BAC}=2\sqrt3.\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2025-3-31 16:03
易得一般地:
在 $\triangle ABC$ 中,边 `BC` 上的两点 `D`, `E`(`BDEC` 顺次排列)将 `BC` 分成比例为 `x:y:z` 的三段,则
\[\frac{\sin\angle DAE\cdot\sin\angle BAC}{\sin\angle BAD\cdot\sin\angle EAC}=\frac{y(x+y+z)}{xz}.\]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2025-3-31 17:25 from mobile
确实一道比较基础的数学题啊!😂

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2025-3-31 17:35
咦,咋“敬畏数学”的用户名变成了“Baidu”?@hbghlyj 咋回事?

Comment

有意思了  posted 2025-3-31 18:04
已修复  posted 2025-3-31 20:30

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:48 GMT+8

Powered by Discuz!

Processed in 0.016839 seconds, 45 queries