Last edited by hbghlyj at 7 days ago
记$\triangle ABC$的三个内角分别为$A, B, C$,点$D, E, F$均在线段$AB$上,且$2AD=2BE=\left(\sqrt{\lambda}-1\right)DE$,$CD\cdot EF=CE\cdot DF$。若$\tan A+\lambda\tan B+\tan C=0,\lambda>1$,证明:
(1)$C>A+B$;
(2)$\left|\tan\angle ACB\cdot\tan\angle DCF\right|>2$。