Forgot password?
 Create new account
View 155|Reply 2

[几何] 三角形 ABC 中 acosA+bcosB+ccosC≤(a+b+c)/2

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2022-12-6 12:51:50 |Read mode
源自知乎提问





:证明:在三角形 ABC 中,acosA+bcosB+ccosC≤(a+b+c)/2?  







已有化边漂亮的证明,我来化角试试.  由正弦定理知\begin{gather*}
a\cos A+b\cos B+c\cos C\leqslant \frac{a+b+c}2\\[1em]
\iff 2(\sin A\cos A+ \sin B\cos B+ \sin C\cos C)\leqslant\sin A+\sin B+\sin C\\[1em]
\iff \sin 2A+\sin2B+\sin2C\leqslant\sin A+\sin B+\sin C,
\end{gather*}
左,右两边各和差化积便有有  \begin{gather*} 4\sin A\sin B\sin C\leqslant 4\cos \frac A2\cos \frac B2\cos \frac C2\\[1em] \iff\sin\frac A2\sin\frac B2\sin\frac C2\leqslant \frac 18, \end{gather*} 这是成立,由 AG-GM,Jensen 不等式知\begin{align*} \sin\frac A2\sin\frac B2\sin\frac C2&\leqslant\left(\frac{\sin\frac A2+\sin\frac B2+\sin\frac C2}3\right)^3\\[1ex] &\leqslant \left(\sin\frac{A/2+B/2+C/2}3\right)^3\\[1ex] &=\frac 18. \end{align*}
isee=freeMaths@知乎

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2022-12-6 22:23:49
还以为你会用射影定理,像 kuing.cjhb.site/forum.php?mod=viewthread&tid=9493 这样

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2022-12-8 20:41:58
kuing 发表于 2022-12-6 22:23
还以为你会用射影定理,像 https://kuing.cjhb.site/forum.php?mod=viewthread&tid=9493 这样 ...
知乎已有答主使用了,故且转角
isee=freeMaths@知乎

手机版Mobile version|Leisure Math Forum

2025-4-21 01:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list