Forgot password?
 Register account
View 1743|Reply 3

[函数] 一个三角函数问题

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2025-5-30 14:20 |Read mode
Last edited by hbghlyj 2025-5-30 18:39若 $B>0,C>0,B+C=\frac{\pi}{3}$,求 $\frac{1}{\sin B}+\frac{1}{\sin C}$ 的最小值。
虽然 $B, C$ 对称,估计 $B=C=\frac{\pi}{6}$ 时取到最小值。有没有其他办法。

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2025-5-30 14:26
突然想到B=pi/6+t,C=pi/6-t,t属于(0,pi/6),结合正弦函数的平方差公式

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-30 14:30
通分和差化积+积化和差,令 `x=\cos\frac{B-C}2` 有原式 `=4x/(4x^2-3)`

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2025-5-30 20:25
Last edited by isee 2025-5-30 21:01设 $f(x)=1/\sin x$,$x\in(0,\pi)$,而 $f''(x)>0$, 依 Jensen 不等式
\[f(B)+f(C)\geqslant 2f\left(\frac{B+C}2\right),\]
下略

Mobile version|Discuz Math Forum

2025-6-1 06:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit