Forgot password?
 Create new account
View 167|Reply 4

[不等式] 三角函数题12

[Copy link]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2024-10-24 17:01:51 |Read mode
Last edited by hbghlyj at 2024-10-25 08:35:00math.stackexchange.com/questions/4989466/$$\sin (α-β-γ) \sin (α+β-γ) \sin (α-β+γ) \sin (α+β+γ)\ge-\frac14$$

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-24 19:31:21
WolframAlpha
\begin{multline}
4\sin^2α\sin^2β\sin^2γ+\sin^4α+\sin^4β+\sin^4γ\\-2\sin^2β\sin^2γ-2\sin^2γ\sin^2α-2\sin^2α\sin^2β\\
=\sin (α-β-γ) \sin (α+β-γ) \sin (α-β+γ) \sin (α+β+γ)
\end{multline}

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-24 19:35:21

最小值

$$
\min \left\{4 a^2 b^2 c^2+a^4+b^4+c^4-2 b^2 c^2-2 c^2 a^2-2 a^2 b^2\right\}=-\frac{1}{4}
$$

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at 2024-10-24 23:52:49
hbghlyj 发表于 2024-10-24 19:35
$$
\min \left\{4 a^2 b^2 c^2+a^4+b^4+c^4-2 b^2 c^2-2 c^2 a^2-2 a^2 b^2\right\}=-\frac{1}{4}
$$
这个比较简单,记 `p=\sum a^2`, `q=\sum a^2b^2`, `r=a^2b^2c^2`,即证
\[4r+p^2-4q+\frac14\geqslant0,\]
若 `p^2\geqslant4q` 则显然成立;
当 `p^2<4q` 时,由 \schur 不等式有 `r\geqslant(4pq-p^3)/9`,则只需证
\[\frac49(4pq-p^3)+p^2-4q+\frac14\geqslant0,\]
由于 `p^2/4<q\leqslant p^2/3`,而上式关于 `q` 是一次函数,只需分别验证当 `q=p^2/4` 和 `q=p^2/3` 时成立即可,前者代入为 `\LHS=1/4>0`,后者代入为 `\LHS=(2p-3)^2(4p+3)/108\geqslant0`,即得证。

1

Threads

18

Posts

334

Credits

Credits
334
QQ

Show all posts

ZCos666 Posted at 2025-2-28 22:39:38
等价命题:
\[ \sin\dfrac{α+β-γ}{2}\sin\dfrac{β+γ-α}{2}\sin\dfrac{γ+α-β}{2}\sin\dfrac{α+β+γ}{2}\le\dfrac{1}{4} \]
而$\text{LHS}=\dfrac{1}{2}\left(\cosα\cosβ\cosγ-\dfrac{1}{4}(\cos2α+\cos2β+\cos2γ+1)\right)$,即证
\[ \cosα^2+\cosβ^2+\cosγ^2-2\cosα\cosβ\cosγ\ge0 \]
显然成立,得证

手机版Mobile version|Leisure Math Forum

2025-4-20 12:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list