Forgot password?
 Create new account
View 257|Reply 8

[不等式] 三元不等式

[Copy link]

8

Threads

8

Posts

195

Credits

Credits
195

Show all posts

创之谜 Posted at 2025-3-7 19:14:50 |Read mode
$已知x^2+y^2+z^2=3(x,y,z\ge0)$
$求证 \sum\sqrt{3-(\dfrac{x+y}{2} )^2}\ge3\sqrt{2}$

8

Threads

8

Posts

195

Credits

Credits
195

Show all posts

 Author| 创之谜 Posted at 2025-3-9 21:43:36
怎么做?

9

Threads

12

Posts

421

Credits

Credits
421

Show all posts

星奔川骛 Posted at 2025-3-10 21:59:47
考虑琴生
f=sqrt(3-x^2)上凸

8

Threads

8

Posts

195

Credits

Credits
195

Show all posts

 Author| 创之谜 Posted at 2025-3-10 22:56:08
星奔川骛 发表于 2025-3-10 21:59
考虑琴生
f=sqrt(3-x^2)上凸
大哥,Jensen反号了吧?

9

Threads

12

Posts

421

Credits

Credits
421

Show all posts

星奔川骛 Posted at 2025-3-11 21:16:13
创之谜 发表于 2025-3-10 22:56
大哥,Jensen反号了吧?
确实,今天看了一下。
平方后柯西秒了

8

Threads

8

Posts

195

Credits

Credits
195

Show all posts

 Author| 创之谜 Posted at 2025-3-12 18:41:34
星奔川骛 发表于 2025-3-11 21:16
确实,今天看了一下。
平方后柯西秒了
佬可以再详细说说吗?

9

Threads

12

Posts

421

Credits

Credits
421

Show all posts

星奔川骛 Posted at 2025-3-13 21:10:02
创之谜 发表于 2025-3-12 18:41
佬可以再详细说说吗?
设 $x, y, z \geq 0$ 满足 $x^2 + y^2 + z^2 = 3$。求证:$\sum \sqrt{3 - \left(\frac{x + y}{2}\right)^2} \geq 3\sqrt{2}$

证明:(1)式两边平方,只需证明 $9 - \sum \left(\frac{x + y}{2}\right)^2 + 2 \sum \sqrt{3 - \left(\frac{x + y}{2}\right)^2} \sqrt{3 - \left(\frac{x + z}{2}\right)^2} \geq 18$,整理得

$$
\sum \sqrt{3 - \left(\frac{x + y}{2}\right)^2} \sqrt{3 - \left(\frac{x + z}{2}\right)^2} \geq \frac{21}{4} + \frac{1}{4} \sum xy,
$$

由柯西不等式,

$$
\sqrt{3 - \left(\frac{x + y}{2}\right)^2} \sqrt{3 - \left(\frac{x + z}{2}\right)^2} = \sqrt{\frac{3}{4}(x^2 + y^2 + z^2) + z^2 - \frac{xy}{2}} \sqrt{\frac{3}{4}(x^2 + z^2) + y^2 - \frac{xz}{2}}
$$

$$
= \sqrt{\left(\frac{3}{4}(x - \frac{y}{3})^2 + \frac{2}{3}(y^2 + z^2) + \frac{z^2}{3}\right)\left(\frac{3}{4}(x - \frac{z}{3})^2 + \frac{2}{3}(y^2 + z^2) + \frac{y^2}{3}\right)}
$$

$$
\geq \frac{3}{4} \left|x - \frac{y}{3}\right| \left|x - \frac{z}{3}\right| + \frac{2}{3}(y^2 + z^2) + \frac{yz}{3},
$$

所以 (2) 式左边

$$
\geq \sum \left[\frac{3}{4} x^2 - \frac{xy + xz}{4} + \frac{yz}{12} + \frac{2}{3}(y^2 + z^2) + \frac{yz}{3}\right] = \frac{25}{4} - \frac{1}{12} \sum xy \geq (2) 式右边。
$$

所以 (2),(1) 式成立。

Rate

Number of participants 1威望 +1 Collapse Reason
创之谜 + 1 赞一个!

View Rating Log

9

Threads

12

Posts

421

Credits

Credits
421

Show all posts

星奔川骛 Posted at 2025-3-13 21:14:48
星奔川骛 发表于 2025-3-13 21:10
设 $x, y, z \geq 0$ 满足 $x^2 + y^2 + z^2 = 3$。求证:$\sum \sqrt{3 - \left(\frac{x + y}{2}\right) ...
其中:
(1)指 $\sum \sqrt{3 - \left(\frac{x+y}{2}\right)^2} \geq 3\sqrt{2}$
(2)指$\sum \sqrt{3 - \left(\frac{x+y}{2}\right)^2} \sqrt{3 - \left(\frac{x+z}{2}\right)^2} \geq \frac{21}{4} + \frac{1}{4} \sum xy$

(突然发现忘标了)

Comment

帖子可以编辑的呀  Posted at 2025-3-13 21:17

手机版Mobile version|Leisure Math Forum

2025-4-20 12:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list