|
星奔川骛
Posted at 2025-3-13 21:10:02
设 $x, y, z \geq 0$ 满足 $x^2 + y^2 + z^2 = 3$。求证:$\sum \sqrt{3 - \left(\frac{x + y}{2}\right)^2} \geq 3\sqrt{2}$
证明:(1)式两边平方,只需证明 $9 - \sum \left(\frac{x + y}{2}\right)^2 + 2 \sum \sqrt{3 - \left(\frac{x + y}{2}\right)^2} \sqrt{3 - \left(\frac{x + z}{2}\right)^2} \geq 18$,整理得
$$
\sum \sqrt{3 - \left(\frac{x + y}{2}\right)^2} \sqrt{3 - \left(\frac{x + z}{2}\right)^2} \geq \frac{21}{4} + \frac{1}{4} \sum xy,
$$
由柯西不等式,
$$
\sqrt{3 - \left(\frac{x + y}{2}\right)^2} \sqrt{3 - \left(\frac{x + z}{2}\right)^2} = \sqrt{\frac{3}{4}(x^2 + y^2 + z^2) + z^2 - \frac{xy}{2}} \sqrt{\frac{3}{4}(x^2 + z^2) + y^2 - \frac{xz}{2}}
$$
$$
= \sqrt{\left(\frac{3}{4}(x - \frac{y}{3})^2 + \frac{2}{3}(y^2 + z^2) + \frac{z^2}{3}\right)\left(\frac{3}{4}(x - \frac{z}{3})^2 + \frac{2}{3}(y^2 + z^2) + \frac{y^2}{3}\right)}
$$
$$
\geq \frac{3}{4} \left|x - \frac{y}{3}\right| \left|x - \frac{z}{3}\right| + \frac{2}{3}(y^2 + z^2) + \frac{yz}{3},
$$
所以 (2) 式左边
$$
\geq \sum \left[\frac{3}{4} x^2 - \frac{xy + xz}{4} + \frac{yz}{12} + \frac{2}{3}(y^2 + z^2) + \frac{yz}{3}\right] = \frac{25}{4} - \frac{1}{12} \sum xy \geq (2) 式右边。
$$
所以 (2),(1) 式成立。 |
Rate
-
View Rating Log
|