Forgot password?
 Register account
View 343|Reply 2

[不等式] 按此思路如何继续做

[Copy link]

9

Threads

6

Posts

130

Credits

Credits
130

Show all posts

极光永明 Posted 2023-6-16 17:48 |Read mode
设$a,b,c>0$,证明:
$$
\sqrt{abc}\left(\sqrt a+\sqrt b+\sqrt c\right)+\left(a+b+c\right)^2\geqslant4\sqrt{3abc\left(a+b+c\right)}
$$
现若按以下思路分析,只需证明$\sqrt{abc}\left(\sqrt a+\sqrt b+\sqrt c\right)+\left(a+b+c\right)^2\geqslant4\left(ab+bc+ca\right)$,有何方法?

思路

思路

687

Threads

110K

Posts

910K

Credits

Credits
91253
QQ

Show all posts

kuing Posted 2023-6-16 18:22
升次去根号,变成
\[abc(a+b+c)+(a^2+b^2+c^2)^2\geqslant4(a^2b^2+b^2c^2+c^2a^2),\]
熟知因式分解
\begin{align*}
4(a^2b^2+b^2c^2+c^2a^2)-(a^2+b^2+c^2)^2&=2(a^2b^2+b^2c^2+c^2a^2)-(a^4+b^4+c^4)\\
&=(a+b+c)\prod(a+b-c),
\end{align*}
所以变成
\[abc\geqslant\prod(a+b-c),\]
这也是熟知的。

9

Threads

6

Posts

130

Credits

Credits
130

Show all posts

 Author| 极光永明 Posted 2023-6-16 22:22
kuing 发表于 2023-6-16 18:22
升次去根号,变成
\[abc(a+b+c)+(a^2+b^2+c^2)^2\geqslant4(a^2b^2+b^2c^2+c^2a^2),\]
熟知因式分解
十分感谢😀

Mobile version|Discuz Math Forum

2025-6-4 01:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit