Forgot password
 Register account
View 832|Reply 3

[不等式] 两道三角不等式的猜想

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2025-5-8 15:00 |Read mode
下面两个猜想是否成立?
设$\triangle ABC$的三边分别为$a,b,c$,则
(1)$\sum\sqrt{\dfrac{b+c-a}{a}}\geqslant \sum\sqrt{\dfrac{b+c}{2a}}$;
(2)$\sum\sqrt{\dfrac{a+b+c}{3(b+c-a)}}\geqslant \sum\sqrt{\dfrac{b+c}{2a}}$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2025-5-8 17:04
(1)当 (a,b,c)=(2,2,3) 时 LHS<RHS,当 (a,b,c)=(3,3,1) 时 LHS>RHS;

Comment

posted 2025-5-9 08:53

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2025-5-8 21:03
(2)虽然多根号看着吓人,其实很简单,松得很,令 `a=y+z`, `b=z+x`, `c=x+y`,则 `x`, `y`, `z>0`,不等式等价于
\[\sqrt{\frac{x+y+z}3}\sum\frac1{\sqrt x}\geqslant\sum\sqrt{\frac{2x+y+z}{2(y+z)}},\]
由 CS 及 AG 有
\begin{align*}
\RHS^2&\leqslant\sum\frac{2x+y+z}2\sum\frac1{y+z}\\
&=2\sum x\sum\frac1{y+z}\\
&\leqslant\sum x\sum\frac1{\sqrt{yz}}\\
&\leqslant\frac13\sum x\left(\sum\frac1{\sqrt x}\right)^2\\
&=\LHS^2.
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:27 GMT+8

Powered by Discuz!

Processed in 0.018552 seconds, 47 queries