|
kuing
posted 2025-5-8 21:03
(2)虽然多根号看着吓人,其实很简单,松得很,令 `a=y+z`, `b=z+x`, `c=x+y`,则 `x`, `y`, `z>0`,不等式等价于
\[\sqrt{\frac{x+y+z}3}\sum\frac1{\sqrt x}\geqslant\sum\sqrt{\frac{2x+y+z}{2(y+z)}},\]
由 CS 及 AG 有
\begin{align*}
\RHS^2&\leqslant\sum\frac{2x+y+z}2\sum\frac1{y+z}\\
&=2\sum x\sum\frac1{y+z}\\
&\leqslant\sum x\sum\frac1{\sqrt{yz}}\\
&\leqslant\frac13\sum x\left(\sum\frac1{\sqrt x}\right)^2\\
&=\LHS^2.
\end{align*} |
|