Forgot password?
 Create new account
View 269|Reply 7

[不等式] 不等式

[Copy link]

78

Threads

33

Posts

919

Credits

Credits
919

Show all posts

大佬最帅 Posted at 2022-4-28 23:07:13 |Read mode

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-4-30 17:36:47
暴~力~证法:齐次化并换元去根号,等价于 `x`, `y`, `z\geqslant0` 证
\[5\left( \frac{xy+yz+zx}{x^2+y^2+z^2}-\frac12 \right)^2+1\geqslant\left( 5\cdot\frac{\sqrt{x^2y^2+y^2z^2+z^2x^2}}{x^2+y^2+z^2}-\frac32 \right)^2,\]
展开并去分母化简为
\[3(x^2+y^2+z^2)\sqrt{x^2y^2+y^2z^2+z^2x^2}\geqslant5(x^2y^2+y^2z^2+z^2x^2)+(x^2+y^2+z^2-xy-yz-zx)(xy+yz+zx),\]
两边平方后可配方为
\[8\left( \sum x^2+\sum yz \right)\prod(x-y)^2+14xyz\sum x^3(x-y)(x-z)+6x^2y^2z^2\left( \sum x^2+\sum(y-z)^2 \right)\geqslant0,\]
即得证。

取等条件为 `xyz=(x-y)(y-z)(z-x)=0`。

78

Threads

33

Posts

919

Credits

Credits
919

Show all posts

 Author| 大佬最帅 Posted at 2022-4-30 20:16:07
回复 2# kuing
咋换的

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-4-30 21:35:21
回复 3# 大佬最帅

你是问第一步怎么来吗?

78

Threads

33

Posts

919

Credits

Credits
919

Show all posts

 Author| 大佬最帅 Posted at 2022-4-30 21:45:17
回复 4# kuing
嗯,主要是换元

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-4-30 21:47:17
回复 5# 大佬最帅

就是令 `\sqrt a=x` 啊

62

Threads

180

Posts

1289

Credits

Credits
1289

Show all posts

nttz Posted at 2022-5-1 11:38:29
回复 2# kuing


    中间的14xyz*...为啥》=0

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-5-1 12:17:45
回复 7# nttz

schur不等式

手机版Mobile version|Leisure Math Forum

2025-4-21 14:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list