Forgot password
 Register account
View 359|Reply 3

[不等式] 求证一个三元不等式

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2023-2-17 15:33 |Read mode
在一个群中看到:
若$a,b,c$是至多一个为0的非负实数。
试证明:$\sqrt{\dfrac{a^2+2bc}{b^2+c^2}}+\sqrt{\dfrac{b^2+2ca}{c^2+a^2}}+\sqrt{\dfrac{c^2+2ab}{a^2+b^2}}\geqslant 3$.

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2023-2-17 16:34 from mobile
见《撸题集》第二章第一题

423

Threads

909

Posts

0

Reputation

Show all posts

original poster lemondian posted 2023-2-18 10:24
色k 发表于 2023-2-17 16:34
见《撸题集》第二章第一题
21801.jpg
这个地方,上面一行能化成下面一行的结果吗?
我搞不出来下面一行的式子哩

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-2-18 14:30
lemondian 发表于 2023-2-18 10:24
这个地方,上面一行能化成下面一行的结果吗?
我搞不出来下面一行的式子哩 ...
原帖他打错了,我收录时也没仔细检查😥,应该是化为
\[\frac{(ab-c^2)(a^2+b^2+c^2+ab)(a-b)^2}{ab(a^2+c^2)(b^2+c^2)}\geqslant0,\]
是成立的,不影响后面。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 13:39 GMT+8

Powered by Discuz!

Processed in 0.018776 seconds, 46 queries