Forgot password?
 Create new account
View 261|Reply 9

[不等式] 三角形的有关不等式,求参数的最大值

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2022-10-19 14:34:44 |Read mode
Last edited by lemondian at 2022-10-20 14:20:00在$\triangle ABC$中,有$\sum\sqrt{\cot\frac{A}{2}cot\frac{B}{2}-1}\geqslant \lambda \sum\sqrt{\cot\frac{A}{2}cot\frac{B}{2}}$,求参数$\lambda $的最大值。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-10-19 19:16:25
三角函数前永远不加  \   

三角形提供的信息只有一丁点:令 `x=\cot(A/2)` 等则 `x+y+z=xyz`。

问题化为:`x`, `y`, `z>0`, `x+y+z=xyz`,求 `\lambda` 的最大值使 `\sum\sqrt{xy-1}\geqslant\lambda\sum\sqrt{xy}` 恒成立。

齐次化就是
\[\sum\sqrt{xy-\frac{xyz}{x+y+z}}\geqslant\lambda\sum\sqrt{xy},\]
也就是
\[\sum\sqrt{xy(x+y)}\geqslant\lambda\sqrt{x+y+z}\sum\sqrt{xy},\]
待续……吃饭先……

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2022-10-20 08:16:02
kuing 发表于 2022-10-19 19:16
三角函数前永远不加  \   

三角形提供的信息只有一丁点:令 `x=\cot(A/2)` 等则 `x+y+z=xyz`。
还在等Kuing吃完饭

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-10-20 11:45:06
你先加 \

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2022-10-20 14:21:03
好吧,已改!
习惯真难改呀

Comment

\[\sum\sqrt{\cot\frac{A}{2}\cot\frac{B}{2}-1}\geqslant \lambda \sum\sqrt{\cot\frac{A}{2}\cot\frac{B}{2}}\]  Posted at 2022-10-20 20:01

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-10-20 14:50:14
lemondian 发表于 2022-10-20 07:21
好吧,已改!
习惯真难改呀
MathQuill
Easily type math in your webapp
输入sin、cos、cot等自动直体, 可导出LaTeX
同样可以用Mathlive
MathLive is a faithful JavaScript implementation of the TeX layout algorithms, the gold standard for typesetting of mathematical content.

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2022-10-22 08:44:57
@kuing:发个答案吧

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-10-22 15:40:55
主要是我还没想出绝妙的证法。

那就先上个难看的 SOS 证法吧:承接 2# 的
\[\sum\sqrt{xy(x+y)}\geqslant\lambda\sqrt{x+y+z}\sum\sqrt{xy},\]
当 `x=y=z` 时有 `\lambda\leqslant\sqrt{2/3}`,下面证明当 `\lambda=\sqrt{2/3}` 时不等式成立,此时不等式等价于以下的
\begin{gather*}
\sum\sqrt{xy}\bigl(\sqrt{3(x+y)}-\sqrt{2(x+y+z)}\bigr)\geqslant0,\\
\sum\sqrt{xy}\frac{x+y-2z}{\sqrt{3(x+y)}+\sqrt{2(x+y+z)}}\geqslant0,\\
\sum\left(\sqrt{yz}\frac{y-x}{\sqrt{3(y+z)}+\sqrt{2(x+y+z)}}+\sqrt{zx}\frac{x-y}{\sqrt{3(z+x)}+\sqrt{2(x+y+z)}}\right)\geqslant0,\\
\sum\sqrt z(x-y)\left(\frac{\sqrt x}{\sqrt{3(z+x)}+\sqrt{2(x+y+z)}}-\frac{\sqrt y}{\sqrt{3(y+z)}+\sqrt{2(x+y+z)}}\right)\geqslant0,\\
\sum\sqrt z(x-y)\frac{\bigl(\sqrt x-\sqrt y\bigr)\sqrt{2(x+y+z)}+\sqrt{3x(y+z)}-\sqrt{3y(z+x)}}{\bigl(\sqrt{3(z+x)}+\sqrt{2(x+y+z)}\bigr)\bigl(\sqrt{3(y+z)}+\sqrt{2(x+y+z)}\bigr)}\geqslant0,\\
\sum\sqrt z(x-y)\frac{\bigl(\sqrt x-\sqrt y\bigr)\sqrt{2(x+y+z)}+\frac{\sqrt3(x-y)z}{\sqrt{x(y+z)}+\sqrt{y(z+x)}}}{\bigl(\sqrt{3(z+x)}+\sqrt{2(x+y+z)}\bigr)\bigl(\sqrt{3(y+z)}+\sqrt{2(x+y+z)}\bigr)}\geqslant0,
\end{gather*}
最后一式显然成立,即得证。

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2022-10-23 00:31:56
kuing 发表于 2022-10-19 19:16
三角函数前永远不加  \   

三角形提供的信息只有一丁点:令 `x=\cot(A/2)` 等则 `x+y+z=xyz`。
令$a^2=\cot(A/2)$,是不是式子可好看,可好证?

手机版Mobile version|Leisure Math Forum

2025-4-21 14:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list