Forgot password?
 Create new account
View 161|Reply 2

[不等式] 已知正实数x、y、z满足:x+y+z=1,求证:$\sqrt{\frac{y+z}{x}}+...$

[Copy link]

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

走走看看 Posted at 2022-5-24 17:45:34 |Read mode
已知正实数x、y、z满足:x+y+z=1,求证:$\sqrt{\frac{y+z}{x}}+\sqrt{\frac{x+z}{y}}+\sqrt{\frac{x+y}{z}}\ge2\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{x+z}}+2\sqrt{\frac{z}{x+y}}$

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-5-24 19:48:48
\begin{align*}
\sum\sqrt{\frac{y+z}x}&=\frac1{\sqrt2}\sum\frac{\sqrt{(1+1)(y+z)}}{\sqrt x}\\
&\geqslant\frac1{\sqrt2}\sum\frac{\sqrt y+\sqrt z}{\sqrt x}\\
&=\frac1{\sqrt2}\sum\sqrt x\left( \frac1{\sqrt y}+\frac1{\sqrt z} \right)\\
&\geqslant2\sqrt2\sum\frac{\sqrt x}{\sqrt y+\sqrt z}\\
&\geqslant2\sqrt2\sum\frac{\sqrt x}{\sqrt{(1+1)(y+z)}}\\
&=2\sum\sqrt{\frac x{y+z}}.
\end{align*}

Rate

Number of participants 1威望 +1 Collapse Reason
走走看看 + 1 很给力!

View Rating Log

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

 Author| 走走看看 Posted at 2022-5-25 12:12:56
kuing 发表于 2022-5-24 19:48
\begin{align*}
\sum\sqrt{\frac{y+z}x}&=\frac1{\sqrt2}\sum\frac{\sqrt{(1+1)(y+z)}}{\sqrt x}\\
&\geqsl ...

佩服!

只用了几次柯西不等式就解决了。从解答过程看,x+y+z=1这个条件可以不要。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list