|
Last edited by hbghlyj at 2025-3-19 19:03:00设 $a, b, c$ 为正数
求证
\[
\sqrt{6 \sum_{c y c} a} \leq \sum_{c y c} \sqrt{c+\frac{2 c^2}{a+b}} \leq \frac{\sqrt{6}}{2}\left(\sqrt{\sum_{c y c} a}+\sum_{c y c} \sqrt{\frac{2 c^2}{a+b}}\right)
\]
猜想:
设 $a, b, c, x, y, z$ 为正数,满足 $a \leq b \leq c, x \leq y \leq z$ ,
\[
x+y+z \geq a+b+c, x \leq a, z \geq c, z \leq \frac{3 c^2}{a+b+c}
\]
证明或否定:(期待加强和推广)
\[
\sqrt{a+x}+\sqrt{b+y}+\sqrt{c+z} \leq \frac{\sqrt{6}}{2}(\sqrt{a+b+c}+\sqrt{x+y+z})
\]
Wanhuihua 20170701 |
|