Forgot password?
 Register account
View 279|Reply 3

[不等式] 三元不等式

[Copy link]

7

Threads

8

Posts

195

Credits

Credits
195

Show all posts

创之谜 Posted 2025-3-17 16:07 |Read mode
正实数\(a,b,c\)满足\(abc=1\)求证:\[\sum\dfrac{1}{1+a+b}\le1\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-17 16:31
令 `a=x^2/yz` 等,有
\[\frac1{1+a+b}=\frac1{1+\frac{x^2}{yz}+\frac{y^2}{zx}}=\frac{xyz}{xyz+x^3+y^3}\leqslant\frac{xyz}{xyz+x^2y+xy^2}=\frac z{z+x+y}.\]

7

Threads

8

Posts

195

Credits

Credits
195

Show all posts

 Author| 创之谜 Posted 2025-3-17 16:35
kuing 发表于 2025-3-17 16:31
令 `a=x^2/yz` 等,有
\[\frac1{1+a+b}=\frac1{1+\frac{x^2}{yz}+\frac{y^2}{zx}}=\frac{xyz}{xyz+x^3+y^3} ...
若考虑证明\(\sum\dfrac{a+b}{1+a+b}\ge2\)用CS怎证?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-17 17:32
创之谜 发表于 2025-3-17 16:35
若考虑证明\(\sum\dfrac{a+b}{1+a+b}\ge2\)用CS怎证?
也行
\begin{align*}
\sum\frac{a+b}{1+a+b}&\geqslant\frac{\bigl(\sum\sqrt{a+b}\bigr)^2}{3+2(a+b+c)}\\
&=\frac{2(a+b+c)+2\sum\sqrt{a+b}\sqrt{a+c}}{3+2(a+b+c)}\\
&\geqslant\frac{2(a+b+c)+2\sum\bigl(a+\sqrt{bc}\bigr)}{3+2(a+b+c)}\\
&=\frac{4(a+b+c)+2\sum\sqrt{bc}}{3+2(a+b+c)}\\
&\geqslant\frac{4(a+b+c)+6}{3+2(a+b+c)}\\
&=2.
\end{align*}

Mobile version|Discuz Math Forum

2025-6-4 17:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit