Forgot password?
 Register account
View 310|Reply 2

[不等式] 一道含参非对称不等式

[Copy link]

19

Threads

44

Posts

409

Credits

Credits
409
QQ

Show all posts

O-17 Posted 2023-4-27 21:14 |Read mode
设 $x,y,z>0$ , $m>n>0$ , 求证:
$$
\dfrac{\sqrt{(x^2+m)(y^2+m)(z^2+m)}-nx}{y+z}\geqslant\frac{\sqrt{m}}{2}\left(\sqrt{m+n}+\sqrt{m-n}\right)
$$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-4-27 21:49
类似于 forum.php?mod=redirect&goto=findpost& … d=8158&pid=41354 的 7#。

由 CS 有
\begin{align*}
\sqrt{(x^2+m)(y^2+m)(z^2+m)}&=\sqrt{(x^2+m)\bigl(n^2+(y^2+m)(z^2+m)-n^2\bigr)}\\
&\geqslant nx+\sqrt m\sqrt{(y^2+m)(z^2+m)-n^2}\\
&=nx+\sqrt m\sqrt{m(y+z)^2+(m-yz)^2-n^2},
\end{align*}
只需证
\[\sqrt{m(y+z)^2+(m-yz)^2-n^2}\geqslant\frac{y+z}2\bigl(\sqrt{m+n}+\sqrt{m-n}\bigr),\]
平方整理为
\[\frac{m-\sqrt{m^2-n^2}}2(y+z)^2+(m-yz)^2-n^2\geqslant0,\]
由均值可知只需证
\[2\bigl(m-\sqrt{m^2-n^2}\bigr)yz+(m-yz)^2-n^2\geqslant0,\]
这恰好为完全平方
\[\bigl(yz-\sqrt{m^2-n^2}\bigr)^2\geqslant0,\]
即得证。

Comment

嗯嗯, 这应该算是那道题的普遍结论了  Posted 2023-4-28 21:57

Mobile version|Discuz Math Forum

2025-6-4 17:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit