|
Prove that $a^2b+b^2c+c^2a+(p+1)(a^2+b^2+c^2)\geq{3p^2(2p+1)}$. Here $3p=a+b+c$.
*Proof.* $\Longleftrightarrow $
$$
\dfrac{1}{3}\sum_{a,b,c}(4a^2b+ab^2+c^3)+(a^2+b^2+c^2)\geq \dfrac{2(a+b+c)^3}{9}+\dfrac{(a+b+c)^2}{3}.
$$
On one hand,
$$
a^2+b^2+c^2\geq \dfrac{(a+b+c)^2}{3}.
$$
On the other hand
$$
3\sum_{a,b,c}(4a^2b+ab^2+c^3)\overset\ast \geq 2\sum_{a,b,c}(c^3+3a^2b+3ab^2+2abc)=2(a+b+c)^3.
$$
Here ($\ast$) part is equivalent to
$$
\sum_{a,b,c}(c^3+6a^2b)\geq \sum_{a,b,c}(3ab^2+4abc).
$$
We notice that
$$
\sum_{a,b,c}(b^3+2a^2b+4a^2b)\geq \sum_{a,b,c}3ab^2+4\cdot 3abc=\sum_{a,b,c}(3ab^2+4abc).
$$
$\square$
By $\dfrac{\mathrm{ChatGPT}+\mathrm{Czhang271828}}{2}$. |
|