Forgot password?
 Create new account
View 318|Reply 6

[不等式] sorry ,but i don't find homo

[Copy link]

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2023-4-18 17:06:09 |Read mode
teomihai :

if you have one ideas about this:

If a,b,c>0 s .t. $a+b+c=3p $ , prove:

$a^2b+b^2c+c^2a+(p+1)(a^2+b^2+c^2)\geq{3p^2(2p+1)}$

sorry ,but i don't find homogenization.

thanks very much
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-4-18 19:19:29
Prove that $a^2b+b^2c+c^2a+(p+1)(a^2+b^2+c^2)\geq{3p^2(2p+1)}$. Here $3p=a+b+c$.

*Proof.* $\Longleftrightarrow $
$$
\dfrac{1}{3}\sum_{a,b,c}(4a^2b+ab^2+c^3)+(a^2+b^2+c^2)\geq \dfrac{2(a+b+c)^3}{9}+\dfrac{(a+b+c)^2}{3}.
$$
On one hand,
$$
a^2+b^2+c^2\geq \dfrac{(a+b+c)^2}{3}.
$$
On the other hand
$$
3\sum_{a,b,c}(4a^2b+ab^2+c^3)\overset\ast \geq 2\sum_{a,b,c}(c^3+3a^2b+3ab^2+2abc)=2(a+b+c)^3.
$$
Here ($\ast$​) part is equivalent to
$$
\sum_{a,b,c}(c^3+6a^2b)\geq \sum_{a,b,c}(3ab^2+4abc).
$$
We notice that
$$
\sum_{a,b,c}(b^3+2a^2b+4a^2b)\geq \sum_{a,b,c}3ab^2+4\cdot 3abc=\sum_{a,b,c}(3ab^2+4abc).
$$
$\square$

By $\dfrac{\mathrm{ChatGPT}+\mathrm{Czhang271828}}{2}$.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2023-8-5 14:39:29
Last edited by hbghlyj at 2025-4-10 04:43:43
Czhang271828 发表于 2023-4-18 19:19
...
$$
\sum_{a,b,c}(b^3+2a^2b+4a^2b)\color{#f00}\geq \sum_{a,b,c}3ab^2+4\cdot 3abc=\sum_{a,b,c}(3ab^2+4abc).
$$

$\Large\sum_{a,b,c}(b^3+2a^2b+4a^2b)\color{#f00}\geq \sum_{a,b,c}3ab^2+4\cdot 3abc$

$\Large\impliedby \underbrace{\sum_{a,b,c}(b^3+2a^2b)\color{#f00}\geq \sum_{a,b,c}3ab^2}_\text{I don't understand😥}$   and   $\underbrace{\sum_{a,b,c}4a^2b\geq4\cdot 3abc}_\text{AM-GM}$

Comment

当时我用了两周前的帖子中的结论 https://kuing.cjhb.site/forum.php?mod=viewthread&tid=10631  Posted at 2023-8-11 18:34

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2023-8-5 14:46:14
Last edited by hbghlyj at 2025-4-10 04:43:51来自@Czhang271828的证明的最后一步:
$a,b,c>0$不全相等,证明
$$\sum_\text{cyc} b (a - b) (2 a - b)>0$$
MSE

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2023-8-5 14:55:09
Last edited by hbghlyj at 2023-8-5 15:09:00$$\iff\sum_\text{cyc}\left(a(a-b)(2a-b)-\frac{1}{3}(a^3-b^3)\right)\geq0$$
居然可以配成$∑(a-b)^2(5a+b)>0$
请问这类式子的一般的配方法

Comment

提示: 接主楼的 MSE 高赞回答, 若存在有价值的配方, 则 $f(a+x,b+x,c+x)$ 是 $x$ 的一次函数. 此时 $\sum a(a-b)(b-2a)$ 满足 $a+(a-b)+(b-2a)=0$.  Posted at 2023-8-11 18:50

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2025-4-10 04:47:43
tommywong posted at 2023-4-18 10:06
i don't find homogenization

What is “homogenization” of this inequality?

手机版Mobile version|Leisure Math Forum

2025-4-20 12:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list