Forgot password?
 Register account
View 1877|Reply 14

[不等式] 这个三元不等式如何证

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2025-6-4 11:40 |Read mode
已知$a,b,c>0$,且$a^2+b^3+c^4\geqslant a^3+b^4+c^5$,求证:$a^2+b^2+c^2\leqslant 3$

Comment

似乎$a,b,c$的范围属于$(0,1)$  Posted 2025-6-4 11:59
@1+1=? 不一定,可以有大于 1 的  Posted 2025-6-4 15:55

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-6-4 15:57
没什么难度,显然 `b^2-b^3\geqslant b^3-b^4` 且 `c^2-c^3\geqslant c^4-c^5`,所以
\[a^2-a^3+b^2-b^3+c^2-c^3\geqslant a^2-a^3+b^3-b^4+c^4-c^5\geqslant0,\]

\[a^2+b^2+c^2\geqslant a^3+b^3+c^3,\]
那么
\[\left(\frac{a^2+b^2+c^2}3\right)^2\geqslant\left(\frac{a^3+b^3+c^3}3\right)^2\geqslant\left(\frac{a^2+b^2+c^2}3\right)^3,\]
所以 `a^2+b^2+c^2\leqslant3`。

Comment

NB  Posted 2025-6-5 08:05
mol  Posted 2025-6-5 13:03

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2025-6-5 08:09
已知$a,b,c>0$,且$a^2+b^3+c^4\geqslant a^3+b^4+c^5$,求证:
(1)$a^3+b^3+c^3\leqslant 3$;
(2)$a^4+b^4+c^4\leqslant 3$;
(3)$a^5+b^5+c^5\leqslant 3$;
(4)这个不等式$a^n+b^n+c^n\leqslant 3$成立的$n$的最大值是多少?

36

Threads

117

Posts

950

Credits

Credits
950

Show all posts

1+1=? Posted 2025-6-5 17:30 From mobile phone
lemondian 发表于 2025-6-5 08:09
已知$a,b,c>0$,且$a^2+b^3+c^4\geqslant a^3+b^4+c^5$,求证:
(1)$a^3+b^3+c^3\leqslant 3$;
(2)$a^ ...
这个不等式$a^n+b^n+c^n\leqslant 3$成立的$n$的最大值是约大于$\frac{57+\sqrt{3}}{10}$的一个级数

Comment

如何得到的呢  Posted 2025-6-5 18:28
把条件看为三元函数,在(1,1)处用级数展开,再把结论也在(1,1)处展开,对比系数得n的最佳逼近  Posted 2025-6-5 22:53

36

Threads

117

Posts

950

Credits

Credits
950

Show all posts

1+1=? Posted 2025-6-5 22:55 From mobile phone
Last edited by 1+1=? 2025-6-6 00:47在此条件下又给出三个式子
(1)$(a-\frac{1}{2})^2+(b-\frac{1}{2})^2+(c-\frac{1}{2})^2\leqslant \frac{3}{4}$;
(2)$(a-\frac{1}{2})^3+(b-\frac{1}{2})^3+(c-\frac{1}{2})^3\leqslant \frac{3}{8} $;
(3)$a^2+b^2+\frac{1}{2}c^2\leqslant 1+ab+c$;本来第三个不等式能双取等的,但是时间不够了😔,所以没有改进,只能单取等

Comment

不知如何证明?  Posted 2025-6-5 22:57
您用机器发现的?  Posted 2025-6-6 08:41
用全微分,再加ggb验证  Posted 2025-6-6 08:51

36

Threads

117

Posts

950

Credits

Credits
950

Show all posts

1+1=? Posted 2025-6-6 00:56 From mobile phone
(4).$a^2+b^2+\frac{1}{4c+2}\leqslant \frac{3}{2}+ab$又加了一个

Mobile version|Discuz Math Forum

2025-6-6 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit