Forgot password
 Register account
View 300|Reply 1

[不等式] 三个由矩形周长问题类似的不等式

[Copy link]

282

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2023-6-16 23:34 |Read mode
怎么证?https://kuing.cjhb.site/forum.php?mod=redirect&goto=findpost&ptid=11151&pid=54758
若$a、b、c$满足$(a + b)(b + c) < 0$, 证明:
(1)$\frac{a-c}{a+b}\cdot \abs{\frac{a-b}{c+a}}+\frac{c-a}{b+c}\cdot \abs{\frac{b-c}{c+a}}>1$
(2)$\frac{a-c}{a+b}\cdot \abs{\frac{a-b}{b+c}}+\frac{c-a}{b+c}\cdot \abs{\frac{b-c}{a+b}}\geqslant4$
(3)$\frac{a-c}{a+b}\cdot ({\frac{a-b}{b+c}})^2+\frac{c-a}{b+c}\cdot({\frac{b-c}{a+b}})^2\geqslant4$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-6-17 15:57
链接里的方法还没学会么,还要我再写么😑

令 `x=a+b`, `y=b+c`,则 `xy<0`。

(1)不等式变成
\[\frac{x-y}x\left|1-\frac y{x+y-2b}\right|+\frac{y-x}y\left|1-\frac x{x+y-2b}\right|>1,\]
关于 `x`, `y` 对称,可不妨设 `x<0<y`,记 `t=1/(x+y-2b)`,则
\[\LHS=\frac{x-y}x\abs{1-y\cdot t}+\frac{y-x}y\abs{1-x\cdot t}=f(t),\]
注意两绝对值前的系数均为正,所以还是那句话:`f(t)` 为开口向上的折线函数,其最小值必在折点处取得,因此
\begin{align*}
f(t)&\geqslant\min\left\{f\left(\frac1x\right),f\left(\frac1y\right)\right\}\\
&=\min\left\{\frac{x-y}x\left|1-\frac yx\right|,\frac{y-x}y\left|1-\frac xy\right|\right\}\\
&=\min\left\{\frac{(x-y)^2}{x^2},\frac{(x-y)^2}{y^2}\right\},
\end{align*}
由 `xy<0` 可知 `(x-y)^2>x^2`, `(x-y)^2>y^2`,所以 `f(t)>1` 即得证。

(2)(3)自己来。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-19 19:57 GMT+8

Powered by Discuz!

Processed in 0.017574 seconds, 43 queries