Forgot password?
 Create new account
View 228|Reply 6

[函数] 一组三角求和

[Copy link]

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2024-12-6 11:28:23 |Read mode
三角求和:
已知$r\inN^*$,求:
1.$\sum_{k=1}^n\sin^{2r}\dfrac{k\pi}{2n+1}$;

2.$\sum_{k=1}^{n-1}\sin^{2r}\dfrac{k\pi}{2n}$;

3.$\sum_{k=1}^n\cos^{2r}\dfrac{k\pi}{2n+1}$;

4.$\sum_{k=1}^{n-1}\cos^{2r}\dfrac{k\pi}{2n}$.

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-12-6 21:11:53
有这么两个公式:
\[\sin^{2r}(\theta)=\frac{C_{2r}^r}{2^{2r}}+\frac{1}{2^{2r-1}}\sum_{j=0}^{r-1}(-1)^{r-j}C_{2r}^j\cos((2r-2j)\theta)\]
以及
\[\cos^{2r}(\theta)=\frac{C_{2r}^r}{2^{2r}}+\frac{1}{2^{2r-1}}\sum_{j=0}^{r-1}C_{2r}^j\cos((2r-2j)\theta)\]

下面只示范一个
\[\sin^{2r}(\frac{k\pi}{2n+1})=\frac{C_{2r}^r}{2^{2r}}+\frac{1}{2^{2r-1}}\sum_{j=0}^{r-1}(-1)^{r-j}C_{2r}^j\cos((2r-2j)\frac{k\pi}{2n+1})\]
\[\sum_{k=1}^n\sin^{2r}(\frac{k\pi}{2n+1})=\frac{nC_{2r}^r}{2^{2r}}+\frac{1}{2^{2r-1}}\sum_{j=0}^{r-1}(-1)^{r-j}C_{2r}^j\sum_{k=1}^n\cos((2r-2j)\frac{k\pi}{2n+1})\]
\[=\frac{nC_{2r}^r}{2^{2r}}+\frac{1}{2^{2r-1}}\sum_{j=0}^{r-1}(-1)^{r-j}C_{2r}^j\cdot\frac{1}{2}\left(-1+\frac{\sin((r-j)\pi)}{\sin(\frac{(r-j)\pi}{2n+1})}\right)\]
注意$r-j$为整数,$\sin((r-j)\pi)=0$,故此
\[=\frac{nC_{2r}^r}{2^{2r}}+\frac{1}{2^{2r}}\sum_{j=0}^{r-1}(-1)^{r-j+1}C_{2r}^j\]
\[=\frac{nC_{2r}^r-\frac{C_{2r}^r}{2}}{2^{2r}}\]
\[=\frac{(2n+1)C_{2r}^r}{2^{2r+1}}\]

Comment

请问一下:上面两个公式如何来的?有公式的推导过程吗?  Posted at 2024-12-7 09:25

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

 Author| lemondian Posted at 2024-12-7 21:19:59
跟这个东东有没有关系?
kuing.cjhb.site/forum.php?mod=viewthread&tid=5332

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-12-7 22:43:24
Last edited by 战巡 at 2024-12-7 22:50:00这里也同样只示范一个:
注意到
\[\cos((2r-2j)\theta)+i\sin((2r-2j)\theta)=(\cos(\theta)+i\sin(\theta))^{2r-2j}\]
\[2\cos((2r-2j)\theta)=\cos((2r-2j)\theta)+i\sin((2r-2j)\theta)+\cos((2r-2j)\theta)-i\sin((2r-2j)\theta)=(\cos(\theta)+i\sin(\theta))^{2r-2j}+(\cos(\theta)-i\sin(\theta))^{2r-2j}\]
那么
\[2C_{2r}^j\cos((2r-2j)\theta)=C_{2r}^j[(\cos(\theta)+i\sin(\theta))^{2r-2j}+(\cos(\theta)-i\sin(\theta))^{2r-2j}]\]
这里注意
\[\cos(\theta)-i\sin(\theta)=\frac{1}{\cos(\theta)+i\sin(\theta)}\]
于是
\[\mbox{原式}=C_{2r}^j(\cos(\theta)+i\sin(\theta))^{2r-2j}+C_{2r}^{2r-j}(\cos(\theta)+i\sin(\theta))^{2j-2r}\]
\[\sum_{j=0}^{r-1}2C_{2r}^j\cos((2r-2j)\theta)=\sum_{j=0}^{r-1}C_{2r}^j(\cos(\theta)+i\sin(\theta))^{2r-2j}+\sum_{j=0}^{r-1}C_{2r}^{2r-j}(\cos(\theta)+i\sin(\theta))^{2j-2r}\]
\[=\sum_{j=0}^{2r}C_{2r}^j(\cos(\theta)+i\sin(\theta))^{2r-2j}-C_{2r}^r\]
\[=\left(\cos(\theta)+i\sin(\theta)+\frac{1}{\cos(\theta)+i\sin(\theta)}\right)^{2r}-C_{2r}^r\]
\[=(2\cos(\theta))^{2r}-C_{2r}^r\]

\[2\sum_{j=0}^{r-1}C_{2r}^j\cos((2r-2j)\theta)=(2\cos(\theta))^{2r}-C_{2r}^r\]
下略

Comment

谢谢!正在努力读懂  Posted at 2024-12-8 11:08
@战巡:
正弦的那个偶次降幂公式能再写一下证明过程吗?俺推不出来😅  Posted at 2025-2-8 21:10

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list