Forgot password?
 Create new account
View 170|Reply 3

[函数] 三角形中 $\frac1{\sin A}+\frac1{\sin B}-\frac1{\sin C}$ 的最小值

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2023-2-20 00:38:05 |Read mode
源自知乎提问

:在三角形 ABC 中,若 $\sin A+2\sin B=2\sin C$ ,则 $\dfrac1{\sin A}+\dfrac1{\sin B}-\dfrac1{\sin C}$ 的最小值为______.





由正弦定理知 $\sin A=2(\sin C-\sin B)\iff a=2(c-b)$ ,再由余弦定理有 \begin{gather*}
a^2=(b-c)^2+2bc(1-\cos A)=\frac{a^2}4+2bc(1-\cos A),\\[1ex]
3a^2=8bc(1-\cos A),\\[1ex]
\frac{\sin A(\sin C-\sin B)}{\sin B\sin C}=\frac{a^2}{2bc}=\frac{4-4\cos A}3.
\end{gather*} 再次由正弦定理,有

\begin{align*}
&\quad\;\frac1{\sin A}+\frac1{\sin B}-\frac1{\sin C}\\[1ex]
&=\frac1{\sin A}\cdot\left(1+\frac{\sin A(\sin C-\sin B)}{\sin B\sin C}\right)\\[1ex]
&=\frac1{\sin A}\cdot\left(1+\frac{4-4\cos A}3\right)\\[1ex]
&=\frac{7-4\cos A}{3\sin A}\\[1ex]
&\geqslant \sqrt{\frac{49-16}{9}}=\frac{\sqrt{33}}3.
\end{align*}

最后的最小值不难由辅助角公式可求.
isee=freeMaths@知乎

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-2-20 01:17:19

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2023-2-20 13:34:24 From the mobile phone
kuing 发表于 2023-2-20 01:17
https://kuing.cjhb.site/forum.php?mod=viewthread&tid=6746
原来是陈题,此法颇具个人特色,我倒是思考好久~

Comment

截图贴到知乎了😁  Posted at 2023-2-20 14:48
isee=freeMaths@知乎

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list