Forgot password?
 Register account
View 337|Reply 2

[几何] 初高中都适合的三角形问题

[Copy link]

277

Threads

546

Posts

5409

Credits

Credits
5409

Show all posts

力工 Posted 2024-6-20 15:39 |Read mode
可能对初中生来说还是难了点吧?请大佬康康。
如图,在$Rt\triangle ABC$中,$C=90\du,AD$是$\triangle ABC$的一条角平分线,$E$为$AD$的中点,连接$BE$,若$BE=BC,CD=2$,求$BD$的长。
QQ图片20240620153710.png

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2024-6-20 18:18
连$CE$,显然$AE=ED=CE$,且$\angle CDE=\angle DCE$,然后易证$\Delta CBE\sim\Delta ECD$,有$CE^2=CD\cdot BC$
令$AC=b, AB=c, AE=ED=CD=d, BD=x$,于是有

1、勾股定理
\[b^2+(1+x)^2=c^2\]
2、勾股定理
\[b^2+1^2=(2d)^2\]
3、角平分线定理
\[\frac{b}{c}=\frac{1}{x}\]
4、上述关系
\[d^2=1\cdot (1+x)\]
最后解出来
\[b=\sqrt{4+\sqrt{17}},c=\frac{1}{4}\sqrt{106+26\sqrt{17}},d=\frac{1}{2}\sqrt{5+\sqrt{17}},x=\frac{1+\sqrt{17}}{4}\]

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 战神的解法很接地气,学生几何知识学得少。.

View Rating Log

10

Threads

12

Posts

431

Credits

Credits
431

Show all posts

星奔川骛 Posted 2024-6-20 18:41
52a9e4ae0a8fbe1501218de7d199701.png
构造\(\triangle CDG\sim\triangle FBE\)
那么\(\frac{DG}{BE}=\frac{CD}{BF}即\frac{x}{x+2}=\frac{2}{x+1}便解得BD=x=\frac{1+\sqrt{17}}{2}\)

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 精彩!构造相似!

View Rating Log

Mobile version|Discuz Math Forum

2025-6-5 01:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit