Forgot password?
 Create new account
View 155|Reply 2

[几何] 解三角形

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2024-6-21 08:59:58 |Read mode
Last edited by kuing at 2024-6-21 15:52:00试做了下,感觉此题也不亲民,求教于大佬。
四边形$ABCD$中,$DC=2AD=2,BA\perp AD,\angle BDC=30\du$,若$\angle C =\angle ADC$,求$BC$的长。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-6-21 15:40:46
Last edited by kuing at 2024-6-21 16:23:00(To 楼主:原图误差有点大,加上有广告水印,我把你的图给换掉了)

由正弦定理
\[BC=DC\cdot\frac{\sin30\du}{\sin\angle DBC}=\frac1{\sin\angle DBC},\]
记 `\angle DBC=x`,则 `\angle C=150\du-x`, `\angle ADB=120\du-x`,于是由条件有
\begin{align*}
DC=2AD&\iff\frac{DC}{DB}=2\frac{AD}{DB}\\
&\iff\frac{\sin x}{\sin(150\du-x)}=2\cos(120\du-x)\\
&\iff\sin x=2\cos(120\du-x)\sin(150\du-x)=\frac12-\cos2x\\
&\iff\sin x=2\sin^2x-\frac12,
\end{align*}
解得
\[\sin x=\frac{1+\sqrt5}4,\]
倒数即得 `BC=\sqrt5-1`。

PS、实际上 `x=54\du`。

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 赞一个!

View Rating Log

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2024-6-21 16:31:35
kuing 发表于 2024-6-21 15:40
(To 楼主:原图误差有点大,加上有广告水印,我把你的图给换掉了)

由正弦定理
谢谢k神!这题用$\angle ADB$变形好繁,我是巷子里赶猪,直来直设的。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list