Forgot password?
 Register account
View 1254|Reply 5

[几何] 圆内接四边形求证$\angle AFC=90$°

[Copy link]

277

Threads

546

Posts

5409

Credits

Credits
5409

Show all posts

力工 Posted 2024-6-10 08:24 |Read mode
Last edited by hbghlyj 2025-5-18 03:26已知四边形$ABCD$内接于$\odot O$,对角线相交于点$E$,点$F$在对角线$BD$上,
且$AB=AC,AF=AD,EF=2DE$, 求证$\angle AFC=90$°

277

Threads

546

Posts

5409

Credits

Credits
5409

Show all posts

 Author| 力工 Posted 2024-6-12 15:25
高人们伸手拉拉我一把。我的做法太烦了,一个全等,三次相似,太难了。延长$AF$交$BC$于$M$,取$FC$的中点$N$,证明出$FN=FM$.

Comment

我想不出😥  Posted 2024-6-12 15:29
谢谢您!  Posted 2024-6-12 15:35
构建等腰梯形DCMF,连接AM交EF于N(N为EF中点),证明DC=MC即可。  Posted 2025-5-20 01:24

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-5-16 20:05
Last edited by Aluminiumor 2025-5-16 20:55设 $\angle ABC=\angle ACB=\angle ADF=\angle AFD=\theta$
    $\angle CAD=\angle BAF=\angle CBF=\varphi$,圆的半径为 $1$.
易知
$AB=AC=2\sin\theta,AD=AF=2\sin(\theta-\varphi),BC=2\sin2\theta$

在 $\triangle{ABF}$ 中,$\dfrac{BF}{\sin\varphi}=\dfrac{AF}{\sin(\theta-\varphi)}\Longrightarrow BF=2\sin\varphi$

在 $\triangle{BCE}$ 中,$\dfrac{BE}{\sin\theta}=\dfrac{BC}{\sin(\theta+\varphi)}\Longrightarrow BE=\dfrac{2\sin\theta\sin2\theta}{\sin(\theta+\varphi)}$

在 $\triangle{ADE}$ 中,$\dfrac{DE}{\sin\varphi}=\dfrac{AD}{\sin(\theta+\varphi)}\Longrightarrow DE=\dfrac{2\sin(\theta-\varphi)\sin\varphi}{\sin(\theta+\varphi)}$

由 $EF=BE-BF=2DE$,得
$\sin\theta\sin2\theta=\sin\varphi\sin(\theta+\varphi)+2\sin\varphi\sin(\theta-\varphi)$
即 $3\sin\varphi\cos\varphi\tan\theta-\sin^2\varphi=2\sin^2\theta$

要证明的即 $AC\cdot\cos\angle CAF=AF$
$\Longleftrightarrow \sin(\theta-\varphi)=\sin\theta\cos(\pi-2\theta-\varphi)$
$\Longleftrightarrow \tan\varphi=\dfrac{2t}{3t^2+1}\text{ (令 }t=\tan\theta\text{ )}$
$\Longleftrightarrow 3t\cdot\dfrac{\tan\varphi}{1+\tan^2\varphi}-\dfrac{\tan^2\varphi}{1+\tan^2\varphi}=\dfrac{2t^2}{t^2+1}\text{ (自行验算)}$
$\Longleftrightarrow 3\sin\varphi\cos\varphi\tan\theta-\sin^2\varphi=2\sin^2\theta$
得证.

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 很有用!

View Rating Log

Mobile version|Discuz Math Forum

2025-6-5 18:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit