Forgot password?
 Register account
View 324|Reply 8

[函数] 怎么求这个函数的最小值?

[Copy link]

5

Threads

9

Posts

78

Credits

Credits
78

Show all posts

wsdjzlh Posted 2024-6-10 21:58 |Read mode
\begin{align}
a^{x}-\frac{\ln x+1}{x}
\end{align}
就是这个含参的函数,a的范围要分两段讨论,一段的最小值好求,另一段的不好求,我研究好久都没办法,请各位大佬看一下

5

Threads

9

Posts

78

Credits

Credits
78

Show all posts

 Author| wsdjzlh Posted 2024-6-10 22:02
a>0

5

Threads

9

Posts

78

Credits

Credits
78

Show all posts

 Author| wsdjzlh Posted 2024-6-11 22:11
也就是\begin{align}
a>\frac{1}{e} ^{\frac{1}{e}}
\end{align}时的情况好算,最小值可表示为\begin{align}
\ln_{}{a}
\end{align},另一种情况不知道能否表示

5

Threads

9

Posts

78

Credits

Credits
78

Show all posts

 Author| wsdjzlh Posted 2024-6-11 22:22
求各位大佬看看啊😭

5

Threads

9

Posts

78

Credits

Credits
78

Show all posts

 Author| wsdjzlh Posted 2024-6-11 22:24
wsdjzlh 发表于 2024-6-11 22:11
也就是\begin{align}
a>\frac{1}{e} ^{\frac{1}{e}}
\end{align}时的情况好算,最小值可表示为\begin{alig ...
这种情况可用同构解得

Comment

1楼问题看着好难,这题这部分同构什么的,细节可以写一下吗?  Posted 2024-6-12 13:06

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-6-12 13:51
观察知:
$$
\text{原式}=\frac{e^{\ln x+x\ln a}-(\ln x+x\ln a)-1}{x}+\ln a\geq \ln a.
$$
取等时 $\ln x+x\ln a=0$, 这对应分类讨论的第一段 ($a\geq e^{-1/e}$). 另一段还在想.

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2024-6-12 15:05
wsdjzlh 发表于 2024-6-11 22:22
求各位大佬看看啊😭
无论咋地,都涉及到超越方程的根,不好办,很难有一般结果,没人理是正常的
isee=freeMaths@知乎

5

Threads

9

Posts

78

Credits

Credits
78

Show all posts

 Author| wsdjzlh Posted 2024-6-13 22:29
isee 发表于 2024-6-12 15:05
无论咋地,都涉及到超越方程的根,不好办,很难有一般结果,没人理是正常的 ...
🙏😭

Mobile version|Discuz Math Forum

2025-6-5 01:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit