Forgot password?
 Create new account
View 184|Reply 8

[函数] 怎么求这个函数的最小值?

[Copy link]

5

Threads

9

Posts

77

Credits

Credits
77

Show all posts

wsdjzlh Posted at 2024-6-10 21:58:28 |Read mode
\begin{align}
a^{x}-\frac{\ln x+1}{x}
\end{align}
就是这个含参的函数,a的范围要分两段讨论,一段的最小值好求,另一段的不好求,我研究好久都没办法,请各位大佬看一下

5

Threads

9

Posts

77

Credits

Credits
77

Show all posts

 Author| wsdjzlh Posted at 2024-6-10 22:02:05
a>0

5

Threads

9

Posts

77

Credits

Credits
77

Show all posts

 Author| wsdjzlh Posted at 2024-6-11 22:11:27
也就是\begin{align}
a>\frac{1}{e} ^{\frac{1}{e}}
\end{align}时的情况好算,最小值可表示为\begin{align}
\ln_{}{a}
\end{align},另一种情况不知道能否表示

5

Threads

9

Posts

77

Credits

Credits
77

Show all posts

 Author| wsdjzlh Posted at 2024-6-11 22:22:17
求各位大佬看看啊😭

5

Threads

9

Posts

77

Credits

Credits
77

Show all posts

 Author| wsdjzlh Posted at 2024-6-11 22:24:25
wsdjzlh 发表于 2024-6-11 22:11
也就是\begin{align}
a>\frac{1}{e} ^{\frac{1}{e}}
\end{align}时的情况好算,最小值可表示为\begin{alig ...
这种情况可用同构解得

Comment

1楼问题看着好难,这题这部分同构什么的,细节可以写一下吗?  Posted at 2024-6-12 13:06

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-6-12 13:51:30
观察知:
$$
\text{原式}=\frac{e^{\ln x+x\ln a}-(\ln x+x\ln a)-1}{x}+\ln a\geq \ln a.
$$
取等时 $\ln x+x\ln a=0$, 这对应分类讨论的第一段 ($a\geq e^{-1/e}$). 另一段还在想.

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2024-6-12 15:05:48
wsdjzlh 发表于 2024-6-11 22:22
求各位大佬看看啊😭
无论咋地,都涉及到超越方程的根,不好办,很难有一般结果,没人理是正常的
isee=freeMaths@知乎

5

Threads

9

Posts

77

Credits

Credits
77

Show all posts

 Author| wsdjzlh Posted at 2024-6-13 22:29:35
isee 发表于 2024-6-12 15:05
无论咋地,都涉及到超越方程的根,不好办,很难有一般结果,没人理是正常的 ...
🙏😭

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list