|
习题6、在三面角 $V$—$ABC$ 内,自顶点 $V$ 引一直线 $VX$,求证:
- $\angle AVX + \angle BVX + \angle CVX > \frac{1}{2} (\angle AVB + \angle BVC + \angle CVA)$;
- $\angle AVX + \angle CVX < \angle AVB + \angle BVC$;
- $\angle AVX + \angle BVX + \angle CVX < \angle AVB + \angle BVC + \angle CVA$

解:
- 在三面角 $V$—$ABX$、$V$—$BCX$ 和 $V$—$CAX$ 中,由三面角的性质定理可知:
\[
\angle AVX + \angle BVX > \angle AVB,
\]
\[
\angle BVX + \angle CVX > \angle BVC,
\]
\[
\angle CVX + \angle AVX > \angle CVA.
\]
将三式两边分别相加,得:
\[
2(\angle AVX + \angle BVX + \angle CVX) > \angle AVB + \angle BVC + \angle CVA,
\]
\[
\therefore \angle AVX + \angle BVX + \angle CVX > \frac{1}{2} (\angle AVB + \angle BVC + \angle CVA).
\] - 延展平面 $AVX$,和平面 $BVC$ 交于直线 $VD$。
在三面角 $V$—$ABD$ 中:
\[
\angle AVB + \angle BVD > \angle AVD,
\]
在三面角 $V$—$CDX$ 中:
\[
\angle DVX + \angle CVD > \angle CVX.
\]
将上两式的两边分别相加,得:
\[
\angle AVB + \angle BVD + \angle DVX + \angle CVD > \angle AVD + \angle CVX.
\]
\[
\because \angle BVD + \angle CVD = \angle BVC, \quad \angle AVX + \angle DVX = \angle AVD,
\]
\[
\therefore \angle AVB + \angle BVC + \angle DVX > \angle AVX + \angle DVX + \angle CVX.
\]
\[
\therefore \angle AVB + \angle BVC > \angle AVX + \angle CVX.
\]
即:
\[
\angle AVX + \angle CVX < \angle AVB + \angle BVC.
\] - 由 (2) 得:
\[
\angle AVX + \angle CVX < \angle AVB + \angle BVC;
\]
同理可证:
\[
\angle AVX + \angle BVX < \angle AVC + \angle BVC,
\]
\[
\angle BVX + \angle CVX < \angle AVB + \angle AVC.
\]
三式两边分别相加,得:
\[
2(\angle AVX + \angle BVX + \angle CVX) < 2(\angle AVB + \angle BVC + \angle CVA),
\]
\[
\therefore \angle AVX + \angle BVX + \angle CVX < \angle AVB + \angle BVC + \angle CVA.
\]
|
|