Forgot password?
 Create new account
View 106|Reply 2

[几何] 如何计算凸包的棱

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2025-3-31 21:49:31 |Read mode
The Four Pillars Of Geometry p166 介绍了 24-cell
它的顶点是
(1,0,0,0), (-1,0,0,0), (0,1,0,0), (0,-1,0,0), (0,0,1,0), (0,0,-1,0), (0,0,0,1), (0,0,0,-1),
(1/2, 1/2, 1/2, 1/2), (1/2, 1/2, 1/2, -1/2), (1/2, 1/2, -1/2, 1/2), (1/2, 1/2, -1/2, -1/2), (1/2, -1/2, 1/2, 1/2), (1/2, -1/2, 1/2, -1/2), (1/2, -1/2, -1/2, 1/2), (1/2, -1/2, -1/2, -1/2), (-1/2, 1/2, 1/2, 1/2), (-1/2, 1/2, 1/2, -1/2), (-1/2, 1/2, -1/2, 1/2), (-1/2, 1/2, -1/2, -1/2), (-1/2, -1/2, 1/2, 1/2), (-1/2, -1/2, 1/2, -1/2), (-1/2, -1/2, -1/2, 1/2), (-1/2, -1/2, -1/2, -1/2)
问题:如何算出它的棱连接了哪些点呢?

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2025-3-31 21:59:49

连接距离=1的点对

Last edited by hbghlyj at 2025-3-31 23:50:03(1,0,0,0) 与 8 个顶点 (1/2, ±1/2, ±1/2, ±1/2) 相连。
由 24-cell 的对称性,每个顶点都与另外 8 个顶点相连。
24 × 8/2 = 96,所以 24-cell 有 96 条棱。
  1. points = {
  2.     {1, 0, 0, 0}, {-1, 0, 0, 0}, {0, 1, 0, 0}, {0, -1, 0, 0},
  3.     {0, 0, 1, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}, {0, 0, 0, -1},
  4.     {1/2, 1/2, 1/2, 1/2}, {1/2, 1/2, 1/2, -1/2}, {1/2, 1/2, -1/2, 1/2}, {1/2, 1/2, -1/2, -1/2},
  5.     {1/2, -1/2, 1/2, 1/2}, {1/2, -1/2, 1/2, -1/2}, {1/2, -1/2, -1/2, 1/2}, {1/2, -1/2, -1/2, -1/2},
  6.     {-1/2, 1/2, 1/2, 1/2}, {-1/2, 1/2, 1/2, -1/2}, {-1/2, 1/2, -1/2, 1/2}, {-1/2, 1/2, -1/2, -1/2},
  7.     {-1/2, -1/2, 1/2, 1/2}, {-1/2, -1/2, 1/2, -1/2}, {-1/2, -1/2, -1/2, 1/2}, {-1/2, -1/2, -1/2, -1/2}
  8. };
  9. adj = Table[
  10.    If[EuclideanDistance[points[[i]], points[[j]]] == 1, 1, 0],
  11.    {i, 24}, {j, 24}
  12. ];
  13. Print[MatrixForm[adj]];
  14. Print["Row sums: ", Total[adj, {2}]];
  15. Print["Column sums: ", Total[adj]];
Copy the Code

\begin{array}{cccccccccccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
每行、每列之和为8,说明每个点连接了8个点

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2025-3-31 22:10:24
从T. Banchoff的网页Schlegel Polyhedra for Regular Polytopes上24-cell的投影图,确实每个顶点有8条棱

手机版Mobile version|Leisure Math Forum

2025-4-20 22:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list