Forgot password
 Register account
View 326|Reply 1

[几何] 反向粘合实心圆柱的顶、底部圆盘得到实心Klein瓶$\text{M}\ddot{\text o} \times I$

[Copy link]

3214

Threads

7831

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-1-7 10:44 |Read mode
就像torus $S^1\times S^1$是solid torus $S^1\times D^1$的边界一样,Klein瓶是实心Klein瓶的边界。
Moxi003[1].JPG
实心Klein瓶
$I=[0,1]$是区间。
黑点组成的圆圈$S^1 \times \{\frac12\}$是这个空间$\text{M}\ddot{\text o} \times I$的一个deformation retract,而它的任何邻域$\text{M}\ddot{\text o} \times [\frac12-\epsilon,\frac12+\epsilon]$的边界为Klein瓶,所以 $\text{M}\ddot{\text o} \times I$ 是Klein瓶的“洋葱”。

参见 J. Scott Carter 的《空间中曲面如何相交》,第 169 页

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-1-7 10:50
考虑一个实心圆柱$D^2\times I$,粘合圆柱$D^2\times I$的顶部圆盘与底部圆盘,通过恒等变换$D^2\to D^2,x\mapsto x$,则得到一个solid torus $D^2\times S^1$. Torus_illustration[1].png

换一种方式:math.stackexchange.com/questions/1445950/prop … d-solid-klein-bottle
考虑一个实心圆柱$D^2\times I$,粘合圆柱$D^2\times I$的顶部圆盘与底部圆盘,通过径向对称$D^2\to D^2,x\mapsto -x$,则得到一个实心Klein瓶。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 13:36 GMT+8

Powered by Discuz!

Processed in 0.023620 seconds, 46 queries