|
original poster
hbghlyj
posted 2025-1-7 09:00
如果先将正方体的左面和右面、前面和后面粘合,再将正方体的顶面和底面旋转1/4圈粘合,得到一个torus bundle,相当于把图中的每个正方形截面换成torus
如果先将正方体的左面和右面、前面和后面粘合,再将正方体的顶面和底面粘合,得到3-torus,是平凡的torus bundle:
For example, if $f$ is the identity map (i.e., the map which fixes every point of the torus) then the resulting torus bundle
$M(f)$ is the three-torus: the Cartesian product of three circles. |
|