Forgot password?
 Create new account
View 150|Reply 2

[几何] 正方体的顶面和底面旋转1/4圈粘合

[Copy link]

3148

Threads

8498

Posts

610K

Credits

Credits
66193
QQ

Show all posts

hbghlyj Posted at 2025-1-7 08:44:47 |Read mode
Understanding the smoothness of the Poincaré homology sphere的回答中写道:
the cube, whose opposite faces can be identified (rigidly!)

正方体: Screenshot 2025-01-07 004247.png
将正方体的顶面和底面旋转1/4圈粘合:
Screenshot 2025-01-07 004517.png

3148

Threads

8498

Posts

610K

Credits

Credits
66193
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-7 08:49:05
用正方体的一个边,如果沿着曲面走,环绕4圈后回到原处。
将此示例与莫比乌斯带进行比较。莫比乌斯带的一个边,如果沿着它走,环绕2圈后回到原处。

3148

Threads

8498

Posts

610K

Credits

Credits
66193
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-7 09:00:46
如果先将正方体的左面和右面、前面和后面粘合,再将正方体的顶面和底面旋转1/4圈粘合,得到一个torus bundle,相当于把图中的每个正方形截面换成torus

如果先将正方体的左面和右面、前面和后面粘合,再将正方体的顶面和底面粘合,得到3-torus,是平凡的torus bundle
For example, if $f$ is the identity map (i.e., the map which fixes every point of the torus) then the resulting torus bundle
$M(f)$ is the three-torus: the Cartesian product of three circles.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list