Forgot password?
 Register account
View 351|Reply 2

[函数] 在三角函数条件方程下求目标函数的最值

[Copy link]

36

Threads

113

Posts

930

Credits

Credits
930

Show all posts

1+1=? Posted 2024-5-15 23:55 From mobile phone |Read mode
Last edited by hbghlyj 2025-5-6 06:51在条件$\cos a\cos b\cos(a-b)=\frac14,$下
求\[
\cos^2a+\cos^2b\]
的最值
答案\[\left[\frac12,\frac{1+\sqrt3}2\right]\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2024-5-16 01:41
恰好今天中午就撸过类似题,见 forum.php?mod=viewthread&tid=12291#pid59862(3# 的末尾)

这里照搬一次好了,首先由积化和差有
\[\cos a\cos b\cos(a-b)=\frac{1+\cos2a+\cos2b+\cos(2a-2b)}4,\]
所以条件等价于
\[\cos2a+\cos2b+\cos(2a-2b)=0,\]
令 `t=\cos(a-b)`,则上式化为
\[2t\cos(a+b)+2t^2-1=0,\]
由此可得
\[(2t^2-1)^2\leqslant4t^2\riff1-\frac{\sqrt3}2\leqslant t^2\leqslant1,\]
那么对所求式有
\begin{align*}
\cos^2a+\cos^2b&=1+\frac{\cos2a+\cos2b}2\\
&=1-\frac{\cos(2a-2b)}2\\
&=\frac32-t^2\in\left[\frac12,\frac{1+\sqrt3}2\right].
\end{align*}

36

Threads

113

Posts

930

Credits

Credits
930

Show all posts

 Author| 1+1=? Posted 2024-5-16 07:44 From mobile phone
多谢

Mobile version|Discuz Math Forum

2025-6-5 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit