Forgot password?
 Create new account
View 2403|Reply 2

[不等式] 一條分式方程求解組或許要用到不等式?

[Copy link]

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2020-9-25 11:08:39 |Read mode
MihaiT:

If you have time for this system

Find x,y,z>0 s.t.

$\displaystyle\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}=x^2+y^2+z^2=3$

Thanks very much.
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-9-25 14:09:44
你的赶脚是对嘀,就是玩不等式……

下面证明
\[\sum\frac{x^2+y^2}{x+y}\geqslant\sqrt{3\sum x^2}.\quad(*)\](总感觉以前见过但翻半天没翻到……)
由 CS 有
\begin{align*}
\LHS&=\sum\frac{\bigl( \sqrt{x^2+y^2} \bigr)^2}{x+y}\\
&\geqslant\frac{\left( \sum\sqrt{x^2+y^2} \right)^2}{2\sum x}\\
&=\frac{\sum x^2+\sum\sqrt{x^2+y^2}\sqrt{x^2+z^2}}{\sum x}\\
&\geqslant\frac{\sum x^2+\sum(x^2+yz)}{\sum x}\\
&=\frac{2\sum x^2+\sum yz}{\sum x},
\end{align*}所以只需证明
\[\left( 2\sum x^2+\sum yz \right)^2\geqslant3\sum x^2\left( \sum x \right)^2,\]正好等价于
\[\left( \sum x^2-\sum yz \right)^2\geqslant0,\]所以式 (*) 成立,取等当且仅当 `x=y=z`。

回到原题就是式 (*) 两边都是 `3`,所以只能 `x=y=z=1`。

Rate

Number of participants 2威望 +2 Collapse Reason
血狼王 + 1 k神!
tommywong + 1 郭子偉牛逼!

View Rating Log

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

血狼王 Posted at 2020-12-10 15:53:54
回复 2# kuing

(*)号式子是我之前在奥数夏令营做过的题目之一
我是从另一个角度用的CS,可惜忘记了怎么写了……

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list