找回密码
 快速注册
搜索
查看: 29|回复: 2

[几何] Bretschneider's Formula

[复制链接]

3147

主题

8381

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65357
QQ

显示全部楼层

hbghlyj 发表于 2022-11-6 02:00 |阅读模式
本帖最后由 hbghlyj 于 2022-11-6 11:12 编辑 考虑由向量 $\vec a$、$\vec b$、$\vec c$ 和 $\vec d$ 构成的四边形,使得 $\vec a+\vec b+\vec c+\vec d=0$ 以及对角线向量 $\vec p$ 和 $\vec q$,使得 $\vec p=\vec b+\vec c$ 和 $\vec q=\vec a+\vec b$。四边形的面积等于两条对角线的二维叉积
使用向量四重积恒等式给出

\begin{aligned}
S&=\frac12|\vec p\times\vec q|\\&=\frac12\sqrt{(\vec p·\vec p)(\vec q·\vec q)-(\vec p·\vec q)^2}\\&=\frac12\sqrt{p^2q^2-(p·q)^2}
\end{aligned}\begin{aligned}
2(p·q)&=2(\vec b+\vec c)·(\vec a+\vec b)\\
&=-2\vec b·(\vec c+\vec d)+2\vec c·(\vec a+\vec b)\\
&=2\vec a·\vec c-2\vec b·\vec d\\
&=(\vec a+\vec c)·(\vec a+\vec c)-\vec a·\vec a-\vec c·\vec c-(\vec b+\vec d)·(\vec b+\vec d)+\vec b·\vec b+\vec d·\vec d\\
&=b^2-a^2+d^2-c^2
\end{aligned}将$p·q$代入就得出Bretschneider公式
\begin{align}
S&=\frac14\sqrt{4p^2q^2-(b^2+d^2-a^2-c^2)^2}\\
&=\sqrt{(s-a)(s-b)(s-c)(s-d)-\frac14(ac+bd+pq)(ac+bd-pq)}\end{align}对于圆内接四边形, 由Ptolemy定理, $ac+bd-pq=0$, 由(2)就得出Brahmagupta公式\begin{equation}S=\sqrt{(s-a)(s-b)(s-c)(s-d)}\end{equation}
设四边形的一组对角的平均数为$α$, 由四边形余弦定理有\begin{aligned}p^2q^2&=a^2c^2+b^2d^2-2abcd\cos2α\\
&=(ac+bd)^2-2abcd(1+\cos2α)\\
&=(ac+bd)^2-4abcd\cos^2α
\end{aligned}即\begin{equation}(ac+bd+pq)(ac+bd-pq)=4abcd\cos^2α\end{equation}代入(2)得出\begin{equation}S=\sqrt{(s-a)(s-b)(s-c)(s-d)-abcd\cos^2α}\end{equation}对于圆内接四边形, $α=90°$, 从而由(5)得到(3).
由(5)可知, 给定四边形的四条边长, 以圆内接四边形的面积为最大.

3147

主题

8381

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65357
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-11-6 02:05
使用向量四重积恒等式给出\begin{aligned}
|\vec p\times\vec q|&=\sqrt{(\vec p·\vec p)(\vec q·\vec q)-(\vec p·\vec q)^2}\\&=\sqrt{p^2q^2-(p·q)^2}
\end{aligned}

Quadruple product: It can be evaluated using the identity:
\[(\mathbf {a\times b} )\cdot (\mathbf {c} \times \mathbf {d} )=(\mathbf {a\cdot c} )(\mathbf {b\cdot d} )-(\mathbf {a\cdot d} )(\mathbf {b\cdot c} )\]
or using the determinant:\[(\mathbf a \times\mathbf b ) ⋅ (\mathbf c \times\mathbf d ) =\begin{vmatrix}\mathbf {a\cdot c} &\mathbf {a\cdot d} \\\mathbf {b\cdot c} &\mathbf {b\cdot d} \end{vmatrix}\]
Proof
We first prove that
\begin{align*}
  \mathbf{c} \times (\mathbf{b} \times \mathbf{a}) \cdot \mathbf{d} = (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}).
\end{align*}
This can be shown by straightforward matrix algebra using the correspondence between elements of \(\mathbb{R}^3\) and \(\mathfrak{so}(3)\), given by
\(\mathbb{R}^3 \ni \mathbf{a} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}^\mathrm{T} \mapsto \mathbf{\hat{a}} \in \mathfrak{so}(3)\), where
\begin{align*}
  \mathbf{\hat{a}} = \begin{bmatrix}
    0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0
  \end{bmatrix}.
\end{align*}
It then follows from the properties of skew-symmetric matrices that
\begin{align*}
  \mathbf{c} \times (\mathbf{b} \times \mathbf{a}) \cdot \mathbf{d} = (\mathbf{\hat{c}}\mathbf{\hat{b}}\mathbf{a})^\mathrm{T} \mathbf{d} = \mathbf{a}^\mathrm{T} \mathbf{\hat{b}} \mathbf{\hat{c}}\mathbf{d} = (-\mathbf{\hat{b}}\mathbf{a})^\mathrm{T} \mathbf{\hat{c}}\mathbf{d} = (\mathbf{\hat{a}}\mathbf{b})^\mathrm{T}\mathbf{\hat{c}}\mathbf{d} = (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}).
\end{align*}
We also know from vector triple products that
\begin{align*}
  \mathbf{c} \times (\mathbf{b} \times \mathbf{a}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{c} \cdot \mathbf{b})\mathbf{a}.
\end{align*}
Using this identity along with the one we have just derived, we obtain the desired identity:
\begin{align*}
  (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = \mathbf{c} \times (\mathbf{b} \times \mathbf{a}) \cdot \mathbf{d} = \left[ (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{c} \cdot \mathbf{b})\mathbf{a} \right] \cdot \mathbf{d} = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}).
\end{align*}

Lagrange's Identity states that $|\vec{a}|^2|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2=|\vec{a}\times\vec{b}|^2 \implies \sqrt{|\vec{a}|^2|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2}=|\vec{a}\times\vec{b}|$
或者可以由$|\vec{a}\cdot\vec{b}|=|\vec{a}||\vec{b}|\cosθ,|\vec{a}\times\vec{b}|=|\vec{a}||\vec{b}|\sinθ$得出这个恒等式.

3147

主题

8381

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65357
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-11-6 02:23

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 20:35

Powered by Discuz!

× 快速回复 返回顶部 返回列表