可数个可数集仍可数

\begin{theorem} 可数个可数集仍可数。 \end{theorem} \begin{proof} 不妨设这些可数集都非空且两两不相交。设

$$ \begin{cases} S_0=\{a_{00}, a_{01}, a_{02}, \cdots\}\\ S_1=\{a_{10}, a_{11}, a_{12}, \cdots\}\\ \cdots \end{cases} $$

若$S_i=\{a_{i0}, a_{i1}, \cdots, a_{ij}\}$为有限集,则令$a_{ij}=a_{i(j+1)}=a_{i(j+2)}=\cdots$,以此将$S_i$扩充为可数无限集。

将所有元素排列为:

$$ \begin{matrix} a_{00} & \rightarrow & a_{01} & ~ & a_{02} & ~ & a_{03} & \cdots \\ ~ & \swarrow & ~ & \swarrow & ~ & \swarrow & ~ & \\ a_{10} & ~ & a_{11} & ~ & a_{12} & ~ & a_{13} & \cdots \\ ~ & \swarrow & ~ & \swarrow & ~ & \swarrow & ~ & \\ a_{20} & ~ & a_{21} & ~ & a_{22} & ~ & a_{23} & \cdots \\ ~ & \swarrow & ~ & \swarrow & ~ & \swarrow & ~ & \\ a_{30} & ~ & a_{31} & ~ & a_{32} & ~ & a_{33} & \cdots \\ \cdots & ~ & \cdots & ~ & \cdots & ~ & \cdots & \cdots \end{matrix} $$

按对角线法,能将$S=\bigcup_{i=0}^{\infty}S_i$排列成序列$a_{00},a_{01},a_{10},a_{02},a_{11},a_{20},\cdots$,所以$S$是可数集。 \end{proof}