Forgot password?
 Create new account
View 161|Reply 0

f(x)=∑sin(nx)/n

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-12-30 05:33:29 |Read mode
Last edited by hbghlyj at 2024-6-8 20:11:00

分段函数

\[f(x)=\sum_{n=1}^\infty\frac{\sin nx}n=\cases{0&若$x=2k\pi$\\\frac{1}{2} i \log (-e^{i x})&其它}\] $\frac{1}{2} i \log (-e^{i x})=\pi\left\lceil\frac{x}{2 \pi}\right\rceil-\frac{x}{2}-\frac{\pi}{2}=-\pi\left\lfloor-\frac{x}{2 \pi}\right\rfloor-\frac{x}{2}-\frac{\pi}{2}$

周期

$2π$

跳跃间断点

$2k\pi,k\inZ$

作为$\frac{\pi-x}2,x\in(0,\pi)$的Fourier $\sin$ series

$\sin(nx)$系数:$\frac2\pi\int_0^\pi\frac{\pi-x}2\sin(nx)\rmd x=\frac1n$
Mathematica
In[]:= FourierSinCoefficient[(π - x)/2, x, n]
Out[]= $\frac1n$

图像

\begin{tikzpicture}[domain=-4*pi:4*pi,x=.3cm] \draw(0,pi/2)node[left]{$\frac\pi2$}--+(.4,0)(0,-pi/2)node[left]{$-\frac\pi2$}--+(.4,0); \draw[->] (-14,0) -- (14,0) node[right] {$x$}; \draw[->] (0,-2) -- (0,2) node[above] {$f(x)$}; \foreach\a/\b in{-pi/-\pi,-2*pi/-2\pi,-3*pi/-3\pi,-4*pi/-4\pi,pi/\pi,2*pi/2\pi,3*pi/3\pi,4*pi/4\pi}{\draw(\a,0)node[below]{$\b$}--+(0,.15);} \foreach\a in{-pi,-3*pi,pi,3*pi}\draw[red](\a+pi,-pi/2)--(\a-pi,pi/2); \foreach\a in{-4*pi,-2*pi,0,2*pi,4*pi}\fill[red](\a,0)circle(1.5pt); \end{tikzpicture}

FourierSinSeries[(π - x)/2, x, n]

MSP6311hf296ec7g0460d900002b1f5a8e8e4acgbc.gif

导函数

$-\frac12+\pi\sum_{k\inZ}\delta(x-2k\pi)$
Mathematica
In[]:= FullSimplify[D[Sum[Sin[n x]/n,{n,1,∞}],x],Assumptions->x∈Reals]
Out[]= $-\frac12$

Related threads

手机版Mobile version|Leisure Math Forum

2025-4-20 22:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list