Forgot password?
 Register account
View 142|Reply 1

矩阵A的特征值λ的几何重数=1, 则rank(A-λI)=n-1

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2023-1-3 21:11 |Read mode
Last edited by hbghlyj 2023-1-8 16:23n阶矩阵A的特征值λ的几何重数=1, 则rank(A-λI)=n-1.
证明
n阶矩阵A的特征值λ的几何重数=1, 则$A$只有1个特征值λ的Jordan block
特征值λ的$m$阶Jordan block
$$J_m=\left[\begin{array}cλ & 1\\ & λ & 1\\ & & λ & 1 \\[-5px] & & & \ddots& \ddots \\[-3px] & & & &λ& 1 \\ & & & && λ\end{array}\right]$$
于是
$$J_m-λI_m=\left[\begin{array}c0 & 1 & & & & \\ & 0 & 1 & & & \\ & & 0 & 1 & & \\[-5px] & & & \ddots &\ddots \\ & & & &0& 1 \\ & & & && 0\end{array}\right]$$
的秩为$m-1$. 其它的Jordan block减$λI$后仍然满秩, 所以rank(A-λI)=n-1.
来源

Comment

这不是废话嘛... 观察万能 Jordan form 知其显然. 或是鉴于 $\lambd$ 的代数重数为 $1$, 则几何重数也是 $1$, 从而 $V_\lambda (A)$ 也就是 $A-\lambda I$ 的零空间一维.  posted 2023-1-3 21:20

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 10:25 GMT+8

Powered by Discuz!

Processed in 0.020636 second(s), 23 queries

× Quick Reply To Top Edit